refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 434 results
Sort by

Filters

Technology

Platform

accession-icon SRP134974
Effect of transgenic RNAi on wandering third instar larval fat body gene expression in Drosophila melanogaster
  • organism-icon Drosophila melanogaster
  • sample-icon 70 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

We compared four transcription factor knockdowns using transgenic RNAi expressed in the larval fat body. FOXO, Tfb1, p53, and Stat92E-dependent gene expression in the Drosophila fat body was quantified on control and high-sugar diets in order to generate expression profiles via RNA-seq. These expression data were used to build a gene regulatory network to predict novel roles for these and other genes during caloric overload. Overall design: Control and fat body-expressed transcription factor RNAi Drosophila were reared on control (0.15M sucrose) and high-sugar (0.7M or 1M sucrose) diets until the wandering stage. Fat bodies were isolated and RNA extracted to determine the effects of diet on gene expression using Illumina RNA-seq.

Publication Title

Seven-Up Is a Novel Regulator of Insulin Signaling.

Sample Metadata Fields

Sex, Specimen part, Treatment, Subject

View Samples
accession-icon SRP018130
Expression data from 0.15M and 0.7M-fed wild-type and ChREBP mutant, third instar Drosophila larval fat bodies (FBs)
  • organism-icon Drosophila melanogaster
  • sample-icon 17 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx, Illumina HiSeq 2000

Description

Chronic high sugar feeding induces obesity, hyperglycemia, and insulin resistance in flies and mammals. These phenotypes are controlled by the fat body, a liver- and adipose- like tissue in Drosophila flies. To gain insight into the mechanisms underlying the connection between diet and insulin sensitivity, we used Illumina RNA-seq to profile gene expression in fat bodies isolated from chronically high sugar fed, wandering (post-prandial) third instar wild type larvae w(L3). These data were compared to control-fed wild-type wL3 fat bodies as well as those expressing transgenic interfering RNA (i) targeting CG18362 (Mio/dChREBP) in the fat body on both diets. Overall design: Female VDRC w1118, cgGAL4, UAS-Dcr2 or UAS-ChREBPi(52606), cgGAL4, UAS-Dcr2 wandering third instar larvae were fed control (0.15M) or high (0.7M) sucrose and fat bodies isolated for RNA extraction.

Publication Title

Seven-Up Is a Novel Regulator of Insulin Signaling.

Sample Metadata Fields

Sex, Specimen part, Subject

View Samples
accession-icon SRP132604
Effect of EcR RNAi on wandering third instar larval fat body gene expression in Drosophila melanogaster
  • organism-icon Drosophila melanogaster
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

We compared ecdysone receptor (EcR)-dependent gene expression in the Drosophila fat body on 0.15 M sucrose and 0.5 M sucrose high-sugar diets in order to gain insight into the role of this gene during caloric overload. Phenotypic analyses showed an increased severity of EcR RNAi phenotypes with increasing dietary sugar concentration. Because EcR is a transcription factor, we performed RNA-seq studies to identify transcriptional targets that might underlie insulin resistance downstream of EcR RNAi. Overall design: Control and fat body-expressed EcR RNAi Drosophila were reared on control (0.15 M sucrose) and high-sugar (0.5 M sucrose) diets until the wandering stage. Fat bodies were isolated and RNA extracted to determine the effects of diet on gene expression using Illumina RNA-seq.

Publication Title

Seven-Up Is a Novel Regulator of Insulin Signaling.

Sample Metadata Fields

Sex, Specimen part, Subject

View Samples
accession-icon SRP101520
Effect of Seven-up RNAi on wandering third instar larval fat body gene expression in Drosophila melanogaster
  • organism-icon Drosophila melanogaster
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

We compared Seven-up-dependent gene expression in the Drosophila fat body on control and high-sugar diets in order to gain insight into the role of this gene during caloric overload. Phenotypic analyses showed an increased severity of Seven-up RNAi phenotypes with increasing dietary sugar concentration. Because Seven-up is a transcription factor, we performed RNA-seq studies to identify transcriptional targets that might underlie insulin resistance downstream of Seven-up RNAi. Our data support a model where Seven-up promotes insulin signaling by inhibiting ecdysone receptor target gene expression. Overall design: Control and fat body-expressed Seven-up RNAi Drosophila were reared on control (0.15M sucrose) and high-sugar (0.7M sucrose) diets until the wandering stage. Fat bodies were isolated and RNA extracted to determine the effects of diet on gene expression using Illumina RNA-seq.

Publication Title

Seven-Up Is a Novel Regulator of Insulin Signaling.

Sample Metadata Fields

Sex, Specimen part, Subject

View Samples
accession-icon SRP059270
Transcriptome Engineering Promotes a Fermentative Transcriptional State
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 83 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500, Illumina HiSeq 2000, Illumina Genome Analyzer IIx

Description

Purpose: The ability to rationally manipulate the transcriptional states of cells would be of great use in medicine and bioengineering. We have developed a novel algorithm, NetSurgeon, which utilizes genome-wide gene regulatory networks to identify interventions that force a cell toward a desired expression state. Results: We used NetSurgeon to select transcription factor deletions aimed at improving ethanol production in S. cerevisiae cultures that are catabolizing xylose. We reasoned that interventions that move the transcriptional states of cells utilizing xylose toward the fermentative state typical of cells that are producing ethanol rapidly (while utilizing glucose) might improve xylose fermentation. Some of the interventions selected by NetSurgeon successfully promoted a fermentative transcriptional state in the absence of glucose, resulting in strains with a 2.7-fold increase in xylose import rates, a 4-fold improvement in xylose integration into central carbon metabolism, or a 1.3-fold increase in ethanol production rate. Conclusions: We conclude by presenting an integrated model of transcriptional regulation and metabolic flux that will enable future metabolic engineering efforts aimed at improving xylose fermentation to prioritize functional regulators of central carbon metabolism. Overall design: Mutant and wildtype S. cerevisiae cells were put into 48 hour aerobic batch fermentations of synthetic complete medium supplmented with 2% glucose and 5% xylose and culture samples were taken at 4 hours and 24 hours for transcriptional profiling performed by RNA-Seq analysis. In addition, wildtype S. cerevisiae cells were grown in various single carbon sources for 12 hours and culture samples were taken for transcriptional profiling performed by RNA-Seq analysis.

Publication Title

Model-based transcriptome engineering promotes a fermentative transcriptional state in yeast.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE46958
Gene expression profiles in roots of hydroponically grown Arabidopsis treated with 0.125 mM gold
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Gold is widely considered to be a biologically inert element; however, it can elicit a profound biological response in plants. Plants can be exposed to significant levels of this precious metal in the environment from naturally occurring sources, as the result of mining activities or more recently resulting from the escalating use of nanoparticles in industry. In this microarray study we have investigated the gene expression response of Arabidopsis thaliana (Arabidopsis) to gold. Although the uptake of metal cations by plant transporters is well characterised, little is known about the uptake of gold, which exists in soil predominantly in a zero-valent state (Au0). We used this study to monitor the expression of candidate genes involved in metal uptake and transport. These show the down-regulation of a discreet number of genes known to be involved in the transport of copper, cadmium, nickel and iron.

Publication Title

Arabidopsis Glutathione Transferases U24 and U25 Exhibit a Range of Detoxification Activities with the Environmental Pollutant and Explosive, 2,4,6-Trinitrotoluene.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE63358
Expression data from invariant natural killer T (iNKT) cells in spleen and adipose tissue
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Adipose tissue iNKT cells have different functions than iNKT cells in the blood and other organs.

Publication Title

Regulatory iNKT cells lack expression of the transcription factor PLZF and control the homeostasis of T(reg) cells and macrophages in adipose tissue.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE43288
Molecular analysis of precursor lesions in familial pancreatic cancer
  • organism-icon Homo sapiens
  • sample-icon 40 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Background: With less than a 5% survival rate pancreatic adenocarcinoma (PDAC) is almost uniformly lethal. In order to make a significant impact on survival of patients with this malignancy, it is necessary to diagnose the disease early, when curative surgery is still possible. Detailed knowledge of the natural history of the disease and molecular events leading to its progression is therefore critical.

Publication Title

Molecular analysis of precursor lesions in familial pancreatic cancer.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE35925
Calcitriol supplementation effects on Ki67 expression and transcriptional profile of breast cancer specimens from post-menopausal patients
  • organism-icon Homo sapiens
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Background: Breast cancer patients present lower 1,25(OH)2D3 or 25(OH)D3 serum levels than unaffected women. Although 1,25(OH)2D3 pharmacological concentrations of 1,25(OH)2D3 may exert antiproliferative effects in breast cancer cell lines, much uncertainty remains about the effects of calcitriol supplementation in tumor specimens in vivo. We have evaluated tumor dimension (ultrassonography), proliferative index (Ki67 expression), 25(OH)D3 serum concentration and gene expression profile, before and after a short term calcitriol supplementation (dose to prevent osteoporosis) to post-menopausal patients. Results: Thirty three patients with operable disease had tumor samples evaluated. Most of them (87.5%) presented 25(OH)D3 insufficiency (<30 ng/mL). Median period of calcitriol supplementation was 30 days. Although tumor dimension did not vary, Ki67 immunoexpression decreased after supplementation. Transcriptional analysis of 15 matched pre/post-supplementation samples using U133 Plus 2.0 GeneChip (Affymetrix) revealed 18 genes over-expressed in post-supplementation tumors. As a technical validation procedure, expression of four genes was also determined by RT-qPCR and a direct correlation was observed between both methods (microarray vs PCR). To further explore the effects of near physiological concentrations of calcitriol on breast cancer samples, an ex vivo model of fresh tumor slices was utilized. Tumor samples from another 12 post-menopausal patients were sliced and treated in vitro with slightly high concentrations of calcitriol (0.5nM), that can be attained in vivo, for 24 hours In this model, expression of PBEF1, EGR1, ATF3, FOS and RGS1 was not induced after a short exposure to calcitriol. Conclusions: In our work, most post-menopausal breast cancer patients presented at least 25(OH)D3 insufficiency. In these patients, a short period of calcitriol supplementation may prevent tumor growth and reduce Ki67 expression, probably associated with discrete transcriptional changes. This observation deserves further investigation to better clarify calcitriol effects in tumor behavior under physiological conditions.

Publication Title

Calcitriol supplementation effects on Ki67 expression and transcriptional profile of breast cancer specimens from post-menopausal patients.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE10746
Chemotherapy-induced oral mucositis (CIOM) in patients with acute myeloid leukemia (AML)
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Chemotherapy may cause DNA damage within the oral mucosa of cancer patients leading to mucositis, a dose-limiting side effect for effective cancer treatment.

Publication Title

Microarray analyses of oral punch biopsies from acute myeloid leukemia (AML) patients treated with chemotherapy.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact