refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 915 results
Sort by

Filters

Technology

Platform

accession-icon SRP075806
RNA-sequencing of human skeletal myocytes from healthy, obese, and type 2 diabetic subjects
  • organism-icon Homo sapiens
  • sample-icon 116 Downloadable Samples
  • Technology Badge Icon

Description

Skeletal muscle is one of the primary tissues involved in the development of type 2 diabetes (T2D). Obesity is tightly associated with T2D, making it challenging to isolate specific effects attributed to the disease alone. By using an in vitro myocyte model system we were able to isolate the inherent properties retained in myocytes originating from donor muscle precursor cells, without being confounded by varying extracellular factors present in the in vivo environment of the donor. We generated and characterized transcriptional profiles of myocytes from 24 human subjects, using a factorial design with two levels each of the factors T2D (healthy or diseased) and obesity (non-obese or obese), and determined the influence of each specific factor on genome-wide transcription. We identified a striking similarity of the transcriptional profiles associated independently with T2D or obesity. Obesity thus presents an inherent phenotype in skeletal myocytes, similar to that induced by T2D. Through bioinformatics analysis we found a candidate epigenetic mechanism, H3K27me3 histone methylation, mediating the observed transcriptional signatures. Functional characterization of the expression profiles revealed dysregulated myogenesis and down-regulated muscle function in connection with T2D and obesity, as well as up-regulation of genes involved in inflammation and the extracellular matrix. Further on, we identified a metabolite subnetwork involved in sphingolipid metabolism and affected by transcriptional up-regulation in T2D. Collectively, these findings pinpoint transcriptional changes that are hard-wired in skeletal myocytes in connection with both obesity and T2D. Overall design: Isolated skeletal muscle precursor cells from 24 males and females (6 normal glucose tolerant, 6 obese, 6 type 2 diabetic, and 6 obese and type 2 diabetic) were differentiated in vitro and stimulated with insulin. RNA from fully differentiated myotubes sampled at 0, 0.5, 1, and 2 hours after insulin stimulation was quantified using RNA-seq (96 samples in total). The 6 base-line (0h) samples from normal glucose tolerant individuals are available under the submission GSE63887, the remaining 90 samples are contained in this submission.

Publication Title

Type 2 diabetes and obesity induce similar transcriptional reprogramming in human myocytes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP050596
RNA-sequencing of healthy human skeletal myocytes
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500, IlluminaHiSeq2000

Description

Skeletal myocytes are metabolically active and susceptible to insulin resistance, thus implicated in type 2 diabetes (T2D). This complex disease involves systemic metabolic changes and their elucidation at the systems level requires genome-wide data and biological networks. Genome-scale metabolic models (GEMs) provide a network-context to integrate high-throughput data. We generated myocyte-specific RNA-seq data and investigated their correlation with proteome data. These data were then used to reconstruct a comprehensive myocyte GEM. Next, we performed a meta-analysis of six studies comparing muscle transcription in T2D versus healthy subjects. Transcriptional changes were mapped on the myocyte GEM, revealing extensive transcriptional regulation in T2D, particularly around pyruvate oxidation, branched-chain amino acid catabolism, and tetrahydrofolate metabolism, connected through the down-regulated dihydrolipoamide dehydrogenase. Strikingly, the gene signature underlying this metabolic regulation successfully classifies the disease state of individual samples, suggesting that regulation of these pathways is a ubiquitous feature of myocytes in response to T2D. Overall design: Isolated skeletal muscle precursor cells from six normal glucose tolerant and non-obese males and females were differentiated in vitro. RNA from fully differentiated myotubes was sequenced using RNA-seq.

Publication Title

Type 2 diabetes and obesity induce similar transcriptional reprogramming in human myocytes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP072494
Transcriptional changes induced by bevacizumab combination therapy in responding and non-responding recurrent glioblastoma patients
  • organism-icon Homo sapiens
  • sample-icon 36 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Purpose: To identify transcriptional changes by RNA-seq in tumor samples, before bevacizumab combination treatment and after bevacizumab combination treatment in both responding and non-responding recurrent glioblastoma patients Overall design: Three comparison analyses were further performed: 1.) Paired analysis of pre- and post-treated samples from responding patients; 2.) Comparison of pre-treated samples of responders vs. non-responders; 3.) Paired analysis of pre- and post-treated samples from non-responding patients The sample ''characteristics: batch'' represents a combination of the RNA-extraction date and the library-preparation date for each sample.

Publication Title

Transcriptional changes induced by bevacizumab combination therapy in responding and non-responding recurrent glioblastoma patients.

Sample Metadata Fields

Sex, Disease, Disease stage, Subject, Time

View Samples
accession-icon GSE18592
Estrogen Coordinates Translation and Transcription Revealing a Role for NRSF in Human Breast Cancer Cells
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Analysis of estrogen receptor (ER)-positive MCF7 cell total RNA expression and polysome-assiciated RNA expression following treatment with estradiol (E2) and vehicle (etoh).

Publication Title

Estrogen coordinates translation and transcription, revealing a role for NRSF in human breast cancer cells.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP059270
Transcriptome Engineering Promotes a Fermentative Transcriptional State
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 83 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500, Illumina HiSeq 2000, Illumina Genome Analyzer IIx

Description

Purpose: The ability to rationally manipulate the transcriptional states of cells would be of great use in medicine and bioengineering. We have developed a novel algorithm, NetSurgeon, which utilizes genome-wide gene regulatory networks to identify interventions that force a cell toward a desired expression state. Results: We used NetSurgeon to select transcription factor deletions aimed at improving ethanol production in S. cerevisiae cultures that are catabolizing xylose. We reasoned that interventions that move the transcriptional states of cells utilizing xylose toward the fermentative state typical of cells that are producing ethanol rapidly (while utilizing glucose) might improve xylose fermentation. Some of the interventions selected by NetSurgeon successfully promoted a fermentative transcriptional state in the absence of glucose, resulting in strains with a 2.7-fold increase in xylose import rates, a 4-fold improvement in xylose integration into central carbon metabolism, or a 1.3-fold increase in ethanol production rate. Conclusions: We conclude by presenting an integrated model of transcriptional regulation and metabolic flux that will enable future metabolic engineering efforts aimed at improving xylose fermentation to prioritize functional regulators of central carbon metabolism. Overall design: Mutant and wildtype S. cerevisiae cells were put into 48 hour aerobic batch fermentations of synthetic complete medium supplmented with 2% glucose and 5% xylose and culture samples were taken at 4 hours and 24 hours for transcriptional profiling performed by RNA-Seq analysis. In addition, wildtype S. cerevisiae cells were grown in various single carbon sources for 12 hours and culture samples were taken for transcriptional profiling performed by RNA-Seq analysis.

Publication Title

Model-based transcriptome engineering promotes a fermentative transcriptional state in yeast.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE79194
Expression data from murine GVH-SSc skin
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Murine GVH-SSc dorsal scapular skin samples were analyzed to determine the effect of IFNAR-1 inhibition on gene expression at day 14 and day 28. Gene expression in GVH-SSc skin from mice treated with a neutralizing IFNAR-1 antibody was compared to that in GVH-SSc skin from mice treated with isotype IgG, with skin from syngeneic graft controls as reference.

Publication Title

Type I IFNs Regulate Inflammation, Vasculopathy, and Fibrosis in Chronic Cutaneous Graft-versus-Host Disease.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE41910
Gene expression profiling of gastrocnemius of mini muscle mice
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Few studies have investigated heterogeneity of selection response in replicate lines subjected to equivalent selection. We developed 4 replicate lines of mice based on high levels of voluntary wheel running (high runner or HR lines) while also maintaining 4 non-selected control lines. This led to the unexpected discovery of the HR mini-muscle (HRmini) phenotype, recognized by a 50% reduction in hindlimb muscle mass, which became fixed in 1 of the 4 HR selected lines.

Publication Title

Gene expression profiling of gastrocnemius of "minimuscle" mice.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE36688
Expression data from sorted interfollicular basal cells (alpha6 integrin-high/CD34-neg) from K14CREER and InvCREER/RosaYFP induced mice
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The skin interfollicular epidermis (IFE) is the first barrier against the external environment and its maintenance is critical for survival. Two seemingly opposite theories have been proposed to explain IFE homeostasis. One posits that IFE is maintained by a long-lived slow-cycling stem cell (SC) population that give rise to short-lived transit-amplifying (TA) cell progeny, while the other suggests that homeostasis is achieved by a single committed progenitor (CP) that balances stochastic fate. Here, we probed the cellular heterogeneity within the IFE using two different inducible CREER targeting IFE progenitors. Quantitative analysis of clonal fate data and proliferation dynamics demonstrate the existence of two distinct proliferative cell compartments composed of slow-cycling SC and CP, both of which undergo population asymmetric self-renewal. However, following wounding, only SCs contribute substantially to the repair and long-term regeneration of the tissue, while CP cells make a minimal and transient contribution.

Publication Title

Distinct contribution of stem and progenitor cells to epidermal maintenance.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE33389
Expression data from low- and high-pathogenicity avian influenza-infected chicken and duck cells
  • organism-icon Anas platyrhynchos, Gallus gallus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Chicken Genome Array (chicken)

Description

While infection of chickens with highly pathogenic avian influenza (HPAI) H5N1 subtypes often leads to complete mortality within 24 to 48 h, infection of ducks in contrast causes mild or no clinical signs. Rapid onsets of fatal disease in chickens, but with no evidence of severe clinical symptoms in ducks, suggest underlying differences in their innate immune mechanisms. To understand the molecular basis for such difference, chicken and duck primary lung cells, infected with a low-pathogenicity avian influenza (LPAI) and two HPAI H5N1 viruses, were subjected to RNA expression profiling using Affymetrix Chicken GeneChip arrays.

Publication Title

Highly pathogenic avian influenza virus infection in chickens but not ducks is associated with elevated host immune and pro-inflammatory responses.

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples
accession-icon SRP009275
Hen1 analysis in zebrafish
  • organism-icon Danio rerio
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIlluminaGenomeAnalyzerII

Description

small RNA libraries from wild-type and Hen1 mutant testes were made with either polyA tailing (VASAGFPHen1minus/plus) or adapter ligation (Hen1Testis and WTTestis) and sequenced on an Illumina GAII platform. Overall design: RNA was isolated from total testis tissue of both Hen1 wildtype and Hen1 mutant animals. After size selection from gel, the small RNA libraries wre made.

Publication Title

Hen1 is required for oocyte development and piRNA stability in zebrafish.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact