refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 421 results
Sort by

Filters

Technology

Platform

accession-icon GSE38602
Transcriptional response to tetanus vaccination in porcine PBMCs
  • organism-icon Sus scrofa
  • sample-icon 37 Downloadable Samples
  • Technology Badge Icon Affymetrix Porcine Genome Array (porcine)

Description

Three groups of German Landrace piglets were vaccinated with tetanus toxoid. Transcriptome profiles of PBMC were analysed from blood samples taken 0, 2, 4, 8, 24 and 75 hours after a first vaccination and 0, 2, 4, 8, 24 and 75 hours as well as 14 d after a second vaccination on day 14.

Publication Title

Transcriptomic response of porcine PBMCs to vaccination with tetanus toxoid as a model antigen.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP017575
Two New Stromal Signatures Stratify Breast Cancers with Different Prognosis
  • organism-icon Homo sapiens
  • sample-icon 53 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

Purpose: Multiple studies from last decades have shown that the microenvironment of carcinomas plays an important role in the initiation, progression and metastasis of cancer. Our group has previously identified novel cancer stroma gene expression signatures associated with outcome differences in breast cancer by gene expression profiling of two tumors of fibroblasts as surrogates for physiologic stromal expression patterns. The aim of this study is to find additional new types of tumor stroma gene expression patterns. Results: 53 tumors were sequenced by 3SEQ with an average of 29 million reads per sample. Both the elastofibroma (EF) and fibroma of tendon sheath (FOTS) gene signatures demonstrated robust outcome results for survival in the four breast cancer datasets. The EF signature positive breast cancers (20-33% of the cohort) demonstrated significantly better outcome for survival. In contrast, the FOTS signature positive breast cancers (11-35% of the cohort) had a worse outcome. The combined stromal signatures of EF, FOTS, and our previously identified DTF, and CSF1 signatures characterize, in part, the stromal expression profile for the tumor microenvironment for between 74%-90% of all breast cancers. Conclusions: We defined and validated two new stromal signatures in breast cancer (EF and FOTS), which are significantly associated with prognosis. Overall design: Gene expression profiling by 3SEQ was performed on 8 additional types of fibrous tumors, to identify different fibrous tumor specific gene expression signatures. We then determined the significance of the fibrous tumor gene signatures in four publically available breast cancer datasets (GSE1456, GSE4922, GSE3494, NKI Dataset).

Publication Title

Next generation sequencing-based expression profiling identifies signatures from benign stromal proliferations that define stromal components of breast cancer.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP023262
A shared transcriptional program in early breast neoplasias despite genetic and clinical distinctions
  • organism-icon Homo sapiens
  • sample-icon 80 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

The earliest recognizable stages of breast neoplasia are lesions that represent a heterogeneous collection of epithelial proliferations currently classified based on morphology. Their role in the development of breast cancer is not well understood but insight into the critical events at this early stage will improve efforts in breast cancer detection and prevention. These microscopic lesions are technically difficult to study so very little is known about their molecular alterations. To characterize the transcriptional changes of early breast neoplasia, we sequenced 3''- end enriched RNAseq libraries from formalin-fixed paraffin-embedded tissue of early neoplasia samples and matched normal breast and carcinoma samples from 25 patients. We find that gene expression patterns within early neoplasias are distinct from both normal and breast cancer patterns and identify a pattern of pro-oncogenic changes, including elevated transcription of ERBB2, FOXA1, and GATA3 at this early stage. We validate these findings on a second independent gene expression profile data set generated by whole transcriptome sequencing. Measurements of protein expression by immunohistochemistry on an independent set of early neoplasias confirms that ER pathway regulators FOXA1 and GATA3, as well as ER itself, are consistently upregulated at this early stage. The early neoplasia samples also demonstrate coordinated changes in long non-coding RNA expression and microenvironment stromal gene expression patterns. This study is the first examination of global gene expression in early breast neoplasia, and the genes identified here represent candidate participants in the earliest molecular events in the development of breast cancer. Overall design: 3SEQ was performed on 72 FFPE human breast samples from 25 patients: 24 normal, 25 early neoplasia, 9 carcinoma in situ, and 14 invasive cancer

Publication Title

A shared transcriptional program in early breast neoplasias despite genetic and clinical distinctions.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Subject

View Samples
accession-icon GSE104634
Analysis of microarray data reliability and pathway networks using experimental formalin-fixed paraffin-embedded tissue
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.1 ST Array (mogene21st)

Description

We assessed the usability of microarrays, which base on formalin-fixed paraffin-embedded (FFPE) tissue.

Publication Title

Systematic evaluation of RNA quality, microarray data reliability and pathway analysis in fresh, fresh frozen and formalin-fixed paraffin-embedded tissue samples.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE104568
Systematic evaluation of RNA quality and microarray data reliability in formalin-fixed paraffin-embedded and fresh frozen tissue samples
  • organism-icon Homo sapiens, Rattus norvegicus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Systematic evaluation of RNA quality, microarray data reliability and pathway analysis in fresh, fresh frozen and formalin-fixed paraffin-embedded tissue samples.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE104561
Systematic evaluation of RNA quality and microarray data reliability in rat formalin-fixed paraffin-embedded and fresh frozen tissue samples
  • organism-icon Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

We assessed the feasibility and reliability of microarray studies using formalin-fixed paraffin-embedded (FFPE) tissue-derived RNA compared with transcriptome data from paired fresh-frozen (FF) material. We established a robust workflow to generate highly reproducible microarray datasets from only 2 ng RNA input. For prior quality assessment, inspection of Agilent Bioanalyzer electropherograms, calculation of RNA fragment size distribution (DV200) and routine qPCR for selected references genes were done.

Publication Title

Systematic evaluation of RNA quality, microarray data reliability and pathway analysis in fresh, fresh frozen and formalin-fixed paraffin-embedded tissue samples.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP125432
Systematic transcriptomics reveals a biphasic mode of sarcomere morphogenesis in flight muscles regulated by Spalt
  • organism-icon Drosophila melanogaster
  • sample-icon 28 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000, Illumina HiSeq 2500

Description

Muscles organise a pseudo-crystalline array of actin, myosin and titin filaments to build force-producing sarcomeres. To study how sarcomeres are built, we performed mRNA-sequencing of developing Drosophila flight muscles and identified 40 distinct expression profile clusters. Strikingly, two clusters are strongly enriched for sarcomeric components. Temporal gene expression together with detailed morphological analysis enabled us to define two distinct phases of sarcomere development, both of which require the transcriptional regulator Spalt major. During the first sarcomere formation phase, 2.0 µm long immature sarcomeres assemble myofibrils that spontaneously contract. In the second sarcomere maturation phase, sarcomeres grow to their final 3.2 µm length and 1.5 µm diameter and acquire stretch-sensitivity. Interestingly, the final number of myofibrils per flight muscle fiber is determined at the onset of the first phase and remains constant. Together, this defines a biphasic mode of sarcomere and myofibril morphogenesis – a new concept which may also apply to vertebrate muscle or heart development. Overall design: Part I: An 8-point timecourse of wild-type flight muscle development in Drosophila melanogaster was analyzed with duplicates/triplicates for each timepoint Part II: A Mef2-Gal4 x salmIR timecourse in duplicate at 4 timepoints was compared to wild-type flight muscle

Publication Title

A transcriptomics resource reveals a transcriptional transition during ordered sarcomere morphogenesis in flight muscle.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE80956
Chronic activation of hepatic Nrf2 has no major effect on fatty acid and glucose metabolism in adult mice
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The transcription factor NF-E2-related factor 2 (Nrf2) induces cytoprotective genes, but has also been linked to the regulation of hepatic energy metabolism. In order to assess the pharmacological potential of hepatic Nrf2 activation in metabolic disease, Nrf2 was activated over 8 weeks in mice on Western diet using two different siRNAs against kelch-like ECH-associated protein 1 (Keap1), the inhibitory protein of Nrf2. Whole genome expression analysis followed by pathway analysis demonstrated that the suppression of Keap1 expression induced genes that are involved in anti-oxidative stress defense and biotransformation, pathways proving the activation of Nrf2 by the siRNAs against Keap1. The expression of neither fatty acid- nor carbohydrate-handling proteins was regulated by the suppression of Keap1. Metabolic profiling of the animals did also not show effects on plasma and hepatic lipids, energy expenditure or glucose tolerance by the activation of Nrf2. The data indicate that hepatic Nrf2 is not a major regulator of intermediary metabolism in mice.

Publication Title

Chronic Activation of Hepatic Nrf2 Has No Major Effect on Fatty Acid and Glucose Metabolism in Adult Mice.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon SRP045499
Cooperative target mRNA destabilization and translation inhibition by miR-58 microRNA family in C. elegans [RNA-Seq]
  • organism-icon Caenorhabditis elegans
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

In animals, microRNAs frequently form families with related sequences. The functional relevance of miRNA families and the relative contribution of family members to target repression have remained, however, largely unexplored. Here, we used the C. elegans miR-58 miRNA family, comprised primarily of four highly abundant members: miR-58.1, miR-80, miR-81 and miR-82, as a model to investigate the redundancy of miRNA family members and their impact on target expression in an in vivo setting. Overall design: RNA was extracted from different miR-58 family mutants (mir-58.1, mir-80; mir-58.1 and mir-80; mir-58.1; mir-81-82) and wild-type Bristol C. elegans strain at late L4 stage and submitted to transcriptome sequencing with Illumina HiSeq2000. The goal was to compare miR-58 target RNA expression and system-wide perturbations across various samples.

Publication Title

Cooperative target mRNA destabilization and translation inhibition by miR-58 microRNA family in C. elegans.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE60645
Genome-wide DNA methylation and expression analysis of lung carcinoma
  • organism-icon Homo sapiens
  • sample-icon 117 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Genome-wide DNA methylation analysis of lung carcinoma reveals one neuroendocrine and four adenocarcinoma epitypes associated with patient outcome.

Sample Metadata Fields

Disease, Disease stage

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact