refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 421 results
Sort by

Filters

Technology

Platform

accession-icon GSE8693
Sex-biased gene expression in 18 day embryonic chicken heart, brain, and gonad
  • organism-icon Gallus gallus
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix Chicken Genome Array (chicken)

Description

The contrasting dose of sex chromosomes in males and females potentially introduces a large-scale imbalance in levels of gene expression between sexes. In many organisms dosage compensation has thus evolved to equalize sex-linked gene expression in males and females1,2, in mammals achieved by X chromosome inactivation and in flies and worms by up- or down-regulation of X-linked expression, respectively. Another form of dosage compensation ensures that expression levels on the X chromosome and on autosomes are balanced3,4. While otherwise widespread in systems with heteromorphic sex chromosomes, the case of dosage compensation in birds (males ZZ, females ZW) remains an unsolved enigma5,6. Here we use a microarray approach to show that male day 18 chicken embryos generally express higher levels of Z-linked genes than female birds, both in soma and in gonads. The distribution of male-to-female fold-change values for Z chromosome genes is wide and has a mean of 1.4-1.6, which is consistent with absence of dosage compensation and sex-specific feedback regulation of gene expression at individual loci2. Intriguingly, without global dosage compensation, female chicken has significantly lower expression levels of Z-linked compared to autosomal genes, which is not the case in male birds. The pronounced sex difference in gene expression is likely to contribute to sexual dimorphism among birds, and potentially has implication to avian sex determination.

Publication Title

Faced with inequality: chicken do not have a general dosage compensation of sex-linked genes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE21324
Gene expression profiles of the diabetic glomerular endothelial cell
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The objective of this study is to create an encyclopedia of all genes expressed in the glomerular endothelial cell under normal and diabetic conditions. We utilized Tie2-GFP transgenic mice to mark cells of the glomerular endothelium. To induce diabetic nephropathy (DB), a genetic model of DB, BKS.Cg-m +/+ Leprdb/J from Jax laboratories was used. We utilized fluorescent activated cell sorting (FACS) to isolate glomerular endothelial cells from normal and diabetic mice. The RNAs from these samples were isolated and utilized to hybridize to microarrays, which offers a powerful, efficient and effective method for the creation of a gene expression atlas.

Publication Title

Gene expression programs of mouse endothelial cells in kidney development and disease.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE20004
Gene expression profiles of adult renal medullary endothelial cells isolated from TIE2-GFP transgenic mice using FACS. (GUDMAP Series ID: 35)
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The long term objective is to create an encyclopedia of the expression levels of all genes in multiple components of the developing kidney. The central thesis is straightforward. The combination of fluorescent activated cell sorting (FACS) plus microarray analysis offers a powerful, efficient and effective method for the creation of a global gene expression atlas of the developing kidney. Microarrays with essentially complete genome coverage can be used to quantitate expression levels of every gene in FACS isolated components of the developing kidney. The ensuing rapid read-out provides an expression atlas that is more sensitive, more economical and more complete than would be possible by in situ hybridizations alone.

Publication Title

Gene expression programs of mouse endothelial cells in kidney development and disease.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE20991
Gene expression profiles of E15.5 endothelial cells isolated from TIE2-GFP transgenic mice using FACS. (GUDMAP Series ID:38)
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The long term objective is to create an encyclopedia of the expression levels of all genes in multiple components of the developing kidney. The central thesis is straightforward. The combination of fluorescent activated cell sorting (FACS) plus microarray analysis offers a powerful, efficient and effective method for the creation of a global gene expression atlas of the developing kidney. Microarrays with essentially complete genome coverage can be used to quantitate expression levels of every gene in FACS isolated components of the developing kidney. The ensuing rapid read-out provides an expression atlas that is more sensitive, more economical and more complete than would be possible by in situ hybridizations alone.

Publication Title

Gene expression programs of mouse endothelial cells in kidney development and disease.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE22464
Gene expression profiles of adult renal cortical endothelial cells isolated from TIE2-GFP transgenic mice using FACS. (GUDMAP Series ID: 41)
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The long term objective is to create an encyclopedia of the expression levels of all genes in multiple components of the developing kidney. The central thesis is straightforward. The combination of fluorescent activated cell sorting (FACS) plus microarray analysis offers a powerful, efficient and effective method for the creation of a global gene expression atlas of the developing kidney. Microarrays with essentially complete genome coverage can be used to quantitate expression levels of every gene in FACS isolated components of the developing kidney. The ensuing rapid read-out provides an expression atlas that is more sensitive, more economical and more complete than would be possible by in situ hybridizations alone.

Publication Title

Gene expression programs of mouse endothelial cells in kidney development and disease.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE22561
Gene expression profiles of adult glomerular endothelial cells isolated from TIE2-GFP transgenic mice using FACS. (GUDMAP Series ID: 42)
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The long term objective is to create an encyclopedia of the expression levels of all genes in multiple components of the developing kidney. The central thesis is straightforward. The combination of fluorescent activated cell sorting (FACS) plus microarray analysis offers a powerful, efficient and effective method for the creation of a global gene expression atlas of the developing kidney. Microarrays with essentially complete genome coverage can be used to quantitate expression levels of every gene in FACS isolated components of the developing kidney. The ensuing rapid read-out provides an expression atlas that is more sensitive, more economical and more complete than would be possible by in situ hybridizations alone.

Publication Title

Gene expression programs of mouse endothelial cells in kidney development and disease.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE20247
C-peptide and/or transforming growth factor beta 1 effect on human proximal tubular cell line
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina HumanWG-6 v3.0 expression beadchip

Description

Microarray analysis reveals up-regulation of retinoic acid and hepatocyte growth factor related signaling pathways by pro-insulin C-peptide in kidney proximal tubular cells: Antagonism of the pro-fibrotic effects of TGF-b1

Publication Title

Proinsulin C-peptide antagonizes the profibrotic effects of TGF-beta1 via up-regulation of retinoic acid and HGF-related signaling pathways.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE12211
Gene expression of CML CD34+ cells during Imatinib therapy
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Imatinib has become the current standard therapy for patients with chronic myelogenous leukaemia (CML). For a better understanding of the Imatinib-related molecular effects in vivo, we assessed gene expression profiles of Philadelphia Chromosome positive (Ph+) CD34+ cells from peripheral blood of 6 patients with de novo CML in chronic phase. After 7 days of treatment with Imatinib the Ph+ CD34+ cells were reassessed to look for changes in the transcriptome. The expression level of 303 genes was significantly different comparing the transcriptome of the Ph+ CD34+ cells before and after 7 days of Imatinib therapy (183 down-regulated, 120 up-regulated, lower bound 1.2-fold). For a substantial number of genes governing cell cycle and DNA replication, the level of expression significantly decreased (CDC2, RRM2, PCNA, MCM4). On the other hand, therapy with Imatinib was associated with an increase of genes related to adhesive interactions, such as L-selectin or CD44. A group of 8 genes with differential expression levels were confirmed using a gene specific quantitative real-time PCR. Thus, during the first week of treatment, Imatinib is preferentially counteracting the bcr-abl induced effects related to a disturbed cell cycle and defective adhesion of leukemic Ph+ CD34+ cells.

Publication Title

Early in vivo changes of the transcriptome in Philadelphia chromosome-positive CD34+ cells from patients with chronic myelogenous leukaemia following imatinib therapy.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP171634
Gene Expression Changes in Major Cell Types of the Glomerulus in a Mouse Model of Focal Segmental Glomerulosclerosis
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We characterize the gene expression changes which occur in the mouse glomerular podocyte, mesangial, and endothelial cells between control mice and mutant mice which are missing two copies of Fyn-proto oncogene (Fyn) and one copy of CD2-associated protein (CD2AP) in a mouse model of FSGS. Overall design: The glomeruli are purified by digestion with Collagenase A and sieving, a single cell suspension is generated via enzymatic dissociation; the single cell suspension is then FACS sorted based on GFP-fluorescence (targeting the glomerular endothelial, mesangial, and podocyte cells). Total RNA was purified using a column-based system. RNA was then quantitatively and qualitatively analyzed using an agilent bioanalynzer, cDNA libraries were generated using Nugen Ovation RNA-Seq V2, and the resulting libraries were ran on an Illumina HiSeq 2500. Data was analyzed using Strand NGS version 2.6.

Publication Title

A bigenic mouse model of FSGS reveals perturbed pathways in podocytes, mesangial cells and endothelial cells.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE17218
Encyclopedia of the expression levels of all genes in multiple components of the developing kidney
  • organism-icon Mus musculus
  • sample-icon 33 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Defining the molecular character of the developing and adult kidney podocyte.

Sample Metadata Fields

Sex

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact