refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 126 results
Sort by

Filters

Technology

Platform

accession-icon GSE38513
Transcriptional analysis of injured airway epithelial cells in Mmp7-null and wildtype mice
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Matrix metalloproteinase 7 (MMP7) is expressed at low levels in intact, normal airways by non-mucous-producing cells, including ciliated cells. In response to injury and infection, MMP7 expression is quickly and markedly upregulated and functions to regulate wound repair and various mucosal immune processes. We evaluated the global transcriptional response of airway epithelial cells from wild type and Mmp7-null mice cultured at an air-liquid interface. A common injury response was seen in both genotypes with up-regulation of genes associated with proliferation and migration. Analysis of differentially expressed genes between genotypes after injury revealed enrichment of functional categories associated with inflammation, cilia and differentiation. Because these analyses suggested MMP7 regulated ciliogenesis, we evaluated the recovery of the airway epithelium in wild type and Mmp7-null mice in vivo after naphthalene injury. These studies identified a new role for MMP7 in attenuating ciliogenesis during wound repair.

Publication Title

Matrix metalloproteinase-7 coordinates airway epithelial injury response and differentiation of ciliated cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE33991
Early responding dendritic cells direct local natural killer response to control HSV-1 infection within the cornea
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Dendritic cells (DCs) regulate both innate and adaptive immune responses.

Publication Title

Early responding dendritic cells direct the local NK response to control herpes simplex virus 1 infection within the cornea.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE40981
The Oscillating miRNA 959-964 cluster impacts Drosophila feeding time and other circadian outputs.
  • organism-icon Drosophila melanogaster
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The oscillating miRNA 959-964 cluster impacts Drosophila feeding time and other circadian outputs.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE40894
The Oscillating miRNA 959-964 cluster impacts Drosophila feeding time and other circadian outputs [expression].
  • organism-icon Drosophila melanogaster
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Using high throughput sequencing of Drosophila head RNA, a small set of miRNAs that undergo robust circadian oscillations in levels were discovered. We concentrated on a cluster of six miRNAs, mir-959-964, all of which peak at about ZT12 or lights-off. The data indicate that the cluster pri-miRNA is transcribed under bona fide circadian transcriptional control and that all 6 mature miRNAs have short half-lives, a requirement for oscillating. Manipulation of food intake dramatically affects the levels and timing of cluster miRNA transcription with no more than minor effects on the core circadian oscillator. This indicates that the central clock regulates feeding, which in turn regulates proper levels and cycling of the cluster miRNAs. Viable Gal4 knock-in as well as cluster knock-out and over-expression strains were used to localize cluster miRNA expression as well as explore their functions. The adult head fat body is a major site of expression, and feeding behavior, innate immunity, metabolism, and perhaps stress responses are under cluster miRNA regulation. The feeding behavior results indicate that there is a feedback circuit between feeding time and cluster miRNA function as well as a surprising role of post-transcriptional regulation in these behaviors and physiology.

Publication Title

The oscillating miRNA 959-964 cluster impacts Drosophila feeding time and other circadian outputs.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP015785
The Oscillating miRNA 959-964 cluster impacts Drosophila feeding time and other circadian outputs [miRNA-seq].
  • organism-icon Drosophila melanogaster
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

Using high throughput sequencing of Drosophila head RNA, a small set of miRNAs that undergo robust circadian oscillations in levels were discovered. We concentrated on a cluster of six miRNAs, mir-959-964, all of which peak at about ZT12 or lights-off. The data indicate that the cluster pri-miRNA is transcribed under bona fide circadian transcriptional control and that all 6 mature miRNAs have short half-lives, a requirement for oscillating. Manipulation of food intake dramatically affects the levels and timing of cluster miRNA transcription with no more than minor effects on the core circadian oscillator. This indicates that the central clock regulates feeding, which in turn regulates proper levels and cycling of the cluster miRNAs. Viable Gal4 knock-in as well as cluster knock-out and over-expression strains were used to localize cluster miRNA expression as well as explore their functions. The adult head fat body is a major site of expression, and feeding behavior, innate immunity, metabolism, and perhaps stress responses are under cluster miRNA regulation. The feeding behavior results indicate that there is a feedback circuit between feeding time and cluster miRNA function as well as a surprising role of post-transcriptional regulation in these behaviors and physiology. Overall design: Six samples of small RNA libraries (RNA size 19 to 29 nucleotides long) were prepared from Drosophila heads, each collected at one circadian time point during a light-dark cycle (ZT0, ZT4, ZT8, ZT12, ZT16, ZT20).

Publication Title

The oscillating miRNA 959-964 cluster impacts Drosophila feeding time and other circadian outputs.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE43401
MYBL2 Is a Sub-haploinsufficient Tumor Suppressor Gene in Myeloid Malignancy
  • organism-icon Homo sapiens
  • sample-icon 43 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

MYBL2 is a sub-haploinsufficient tumor suppressor gene in myeloid malignancy.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE43399
MYBL2 Is a Sub-haploinsufficient Tumor Suppressor Gene in Myeloid Malignancy (RNA)
  • organism-icon Homo sapiens
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

A dosage-dependent role for tumor suppressor genes in the initiation of myeloid malignancies remains controversial. Here we show that MYBL2 is expressed at sharply reduced levels in CD34+ cells from most patients with myelodysplastic syndrome (MDS; 65%; n=26). In a murine competitive reconstitution model, Mybl2 knockdown by RNAi to 20-30% of normal levels in multipotent hematopoietic progenitors led to clonal dominance by these sub-haploinsufficient cells, affecting all blood cell lineages. By 6 months post-transplantation, the reconstituted mice had developed a myeloproliferative/myelodysplastic disorder originating from the cells with aberrantly reduced Mybl2 expression. Thus, downregulation of MYBL2 activity to levels below those predicted by classical haploinsufficiency drives the clonal expansion of hematopoietic progenitors in a large fraction of human MDS cases.

Publication Title

MYBL2 is a sub-haploinsufficient tumor suppressor gene in myeloid malignancy.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE43400
MYBL2 Is a Sub-haploinsufficient Tumor Suppressor Gene in Myeloid Malignancy (RNAi)
  • organism-icon Homo sapiens
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

A dosage-dependent role for tumor suppressor genes in the initiation of myeloid malignancies remains controversial. Here we show that MYBL2 is expressed at sharply reduced levels in CD34+ cells from most patients with myelodysplastic syndrome (MDS; 65%; n=26). In a murine competitive reconstitution model, Mybl2 knockdown by RNAi to 20-30% of normal levels in multipotent hematopoietic progenitors led to clonal dominance by these sub-haploinsufficient cells, affecting all blood cell lineages. By 6 months post-transplantation, the reconstituted mice had developed a myeloproliferative/myelodysplastic disorder originating from the cells with aberrantly reduced Mybl2 expression. Thus, downregulation of MYBL2 activity to levels below those predicted by classical haploinsufficiency drives the clonal expansion of hematopoietic progenitors in a large fraction of human MDS cases.

Publication Title

MYBL2 is a sub-haploinsufficient tumor suppressor gene in myeloid malignancy.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE47575
Regulation of Gene Expression by Connective Tissue Growth Factor (CTGF) in Mesenchymal Stromal Cells (MSCs)
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

mRNA from bone marrow-derived MSCs stably expressing CTGF-specific shRNA (or empty vector control) was analyzed for differential gene expression. Significant differences were found in cell proliferation-related genes, especially genes related to the M phase of the cell cycle, which were down-regulated in CTGF-knockdown-MSCs compared to control MSCs.

Publication Title

Connective tissue growth factor regulates adipocyte differentiation of mesenchymal stromal cells and facilitates leukemia bone marrow engraftment.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE11889
The hematopoietic stem cell in chronic phase CML is characterized by a transcriptional profile resembling normal myeloid progenitor cells and reflecting loss of quiescence
  • organism-icon Homo sapiens
  • sample-icon 45 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

We found that composition of cell subsets within the CD34+ cell population is markedly altered in chronic phase (CP) chronic myeloid leukemia (CML). Specifically, proportions and absolute cell counts of common myeloid progenitors (CMP) and megakaryocyte-erythrocyte progenitors (MEP) are significantly greater in comparison to normal bone marrow whereas absolute numbers of hematopoietic stem cells (HSC) are equal. To understand the basis for this, we performed gene expression profiling (Affymetrix HU-133A 2.0) of the distinct CD34+ cell subsets from six patients with CP CML and five healthy donors. Euclidean distance analysis revealed a remarkable transcriptional similarity between the CML patients' HSC and normal progenitors, especially CMP. CP CML HSC were transcriptionally more similar to their progeny than normal HSC to theirs, suggesting a more mature phenotype. Hence, the greatest differences between CP CML patients and normal donors were apparent in HSC including downregulation of genes encoding adhesion molecules, transcription factors, regulators of stem-cell fate and inhibitors of cell proliferation in CP CML. Impaired adhesive and migratory capacities were functionally corroborated by fibronectin detachment analysis and transwell assays, respectively. Based on our findings we propose a loss of quiescence of the CML HSC on detachment from the niche leading to expansion of myeloid progenitors.

Publication Title

The hematopoietic stem cell in chronic phase CML is characterized by a transcriptional profile resembling normal myeloid progenitor cells and reflecting loss of quiescence.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact