refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 51 results
Sort by

Filters

Technology

Platform

accession-icon GSE54590
HEXIM knockdown triggers apoptosis-induced proliferation and deregulates Hedgehog signaling
  • organism-icon Drosophila melanogaster
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

We address the function of HEXIM, an inhibitor of the general transcriptional elongation regulator P-TEFb which regulates the transcriptional status of many developmental genes, during Drosophila development. We showed that HEXIM knockdown mutants display organs development failure. In the wing disc, it induces apoptosis and affects Hh signaling. The continuous death of proliferative cells is compensated by apoptosis-induced cell proliferation, in a manner similar to that of differentiated cells, together with high levels of Hh and Ci. We completed this analysis with microarrays to characterize the molecular phenotype of HEXIM knockdown during eye differentiation.

Publication Title

Functional Interaction between HEXIM and Hedgehog Signaling during Drosophila Wing Development.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP110515
Beyond the polymerase-gamma theory: Respiratory chain inhibition and production of ROS as modes of NRTI induced mitochondrial toxicity
  • organism-icon Caenorhabditis elegans
  • sample-icon 30 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

HIV-1 nucleoside reverse transcriptase inhibitor (NRTI) use is associated with severe adverse events. However, the exact mechanisms behind their toxicity has not been fully understood. Mitochondrial dysfunction after chronic exposure to NRTIs has predominantly been assigned to mitochondrial polymerase-? inhibition by NRTIs. However, an increasing amount of data suggests that this is not the sole mechanism. Many NRTI induced adverse events have been linked to the incurrence of oxidative stress, although the causality of events leading to reactive oxygen species (ROS) production and their role in toxicity is unclear. In this study we show that short-term effects of these drugs, which are rarely discussed in the literature, include direct inhibition of the mitochondrial respiratory chain (MRC), decreased ATP levels and increased ROS production. Collectively these events affect fitness and longevity of C. elegans through mitohormetic signalling events. Furthermore, we demonstrate that these effects can be normalized by addition of the anti-oxidant N-acetylcysteine (NAC), which suggests that ROS likely influence the onset and severity of adverse events upon drug exposure. Overall design: RNA-seq on Caenorhabditis elegans exposed to DMSO, 3''-azido-3''-deoxythymidine (zidovudine or AZT), 2'',3''-didehydro-2'',3''-deoxythymidine (stavudine or d4T), 3''-deoxy-3''-fluorothymidine (alovudine or FLT) or untreated control after 24 or 72 hours of exposure.

Publication Title

Beyond the polymerase-γ theory: Production of ROS as a mode of NRTI-induced mitochondrial toxicity.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP092049
Transcriptome of EMT induced MCF10A cells by TGFb treatment or SNAIL S6A expression.
  • organism-icon Homo sapiens
  • sample-icon 35 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

EMT, Epithelial to mesenchymal transition is a developmental biology process associated with migration, known to be involved in cancer metastasis. To study this process, we used the breast epithelial cell line MCF10A that enter in EMT after treatment with the cytokine TGFB or by expression of EMT transcriptor factor SNAIL. Overall design: mRNA profiles of MCF10A cells treated for 1 or 6 days with TGFb (done in duplicate), and mRNA profiles of Snail inducible line, MCF10A-SNAIl, induced for 1 or 6 days.

Publication Title

Genomic Instability Is Induced by Persistent Proliferation of Cells Undergoing Epithelial-to-Mesenchymal Transition.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE9408
Identification of putative Arabidopsis DEMETER target genes by GeneChip Analysis
  • organism-icon Arabidopsis thaliana
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

We used Affymetrix Arabidopsis ATH1 GeneChip to profile RNAs active in wild type columbia (glabrous) and CaMV::DME pollen and stamens.

Publication Title

Identification of putative Arabidopsis DEMETER target genes by GeneChip analysis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE106076
ZFN engineered hiPSC with the FTDP-17 associated MAPT IVS10+16 mutation w/wo additional P301S mutation and comparison of FTDP-17 IVS10+16 patient derived hiPSC and ZFN engineered hiPSC
  • organism-icon Homo sapiens
  • sample-icon 65 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U219 Array (hgu219)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Genetically Engineered iPSC-Derived FTDP-17 MAPT Neurons Display Mutation-Specific Neurodegenerative and Neurodevelopmental Phenotypes.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE104013
ZFN engineered hiPSC with the FTDP-17 associated MAPT IVS10+16 mutation w/wo additional P301S mutation
  • organism-icon Homo sapiens
  • sample-icon 46 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U219 Array (hgu219)

Description

The development of an effective therapy against tauopathies like Alzheimers disease (AD) and frontotemporal dementia (FTD) remains challenging, partly due to limited access to fresh brain tissue, the lack of translational in vitro disease models and the fact that underlying molecular pathways remain to be deciphered. Several genes play an important role in the pathogenesis of AD and FTD, one of them being the MAPT gene encoding the microtubule-associated protein tau. Over the past few years, it has been shown that induced pluripotent stem cells (iPSC) can be used to model various human disorders and can serve as translational in vitro tools. Therefore, we generated iPSC harboring the pathogenic FTDP-17 (frontotemporal dementia and parkinsonism linked to chromosome 17) associated mutations IVS10+16 with and without P301S in MAPT using Zinc Finger Nuclease technology. Whole transcriptome analysis of MAPT IVS10+16 neurons reveals neuronal subtype differences, reduced neural progenitor proliferation potential and aberrant WNT signaling. Notably, all phenotypes were recapitulated using patient-derived neurons. Finally, an additional P301S mutation causes an increased calcium bursting frequency, reduced lysosomal acidity and tau oligomerization.

Publication Title

Genetically Engineered iPSC-Derived FTDP-17 MAPT Neurons Display Mutation-Specific Neurodegenerative and Neurodevelopmental Phenotypes.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE106075
Comparison of FTDP-17 IVS10+16 patient derived hiPSC and ZFN engineered hiPSC
  • organism-icon Homo sapiens
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U219 Array (hgu219)

Description

The development of an effective therapy against tauopathies like Alzheimers disease (AD) and frontotemporal dementia (FTD) remains challenging, partly due to limited access to fresh brain tissue, the lack of translational in vitro disease models and the fact that underlying molecular pathways remain to be deciphered. Several genes play an important role in the pathogenesis of AD and FTD, one of them being the MAPT gene encoding the microtubule-associated protein tau. Over the past few years, it has been shown that induced pluripotent stem cells (iPSC) can be used to model various human disorders and can serve as translational in vitro tools. Therefore, we generated iPSC harboring the pathogenic FTDP-17 (frontotemporal dementia and parkinsonism linked to chromosome 17) associated mutations IVS10+16 with and without P301S in MAPT using Zinc Finger Nuclease technology. Whole transcriptome analysis of MAPT IVS10+16 neurons reveals neuronal subtype differences, reduced neural progenitor proliferation potential and aberrant WNT signaling. Notably, all phenotypes were recapitulated using patient-derived neurons. Finally, an additional P301S mutation causes an increased calcium bursting frequency, reduced lysosomal acidity and tau oligomerization.

Publication Title

Genetically Engineered iPSC-Derived FTDP-17 MAPT Neurons Display Mutation-Specific Neurodegenerative and Neurodevelopmental Phenotypes.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE24217
Gene-expression profile of the response to E. coli (k2bh2) infection in the bovine udder
  • organism-icon Bos taurus
  • sample-icon 49 Downloadable Samples
  • Technology Badge Icon Affymetrix Bovine Genome Array (bovine)

Description

Mastitis in dairy cows is one of the most costly and prevalent diseases affecting dairy cows world wide. Insight in the molecular regulation of the host immune response to an E. coli infection, could help to develop new strategies to prevent cattle from E. coli infection. Here we performed a gene-expression analysis from udder tissue exposed to a controlled E. coli infection at T=24h post infection (p.i.) representing the acute phase response and at T=192h p.i. representing a chronic stage.

Publication Title

In depth analysis of genes and pathways of the mammary gland involved in the pathogenesis of bovine Escherichia coli-mastitis.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE6414
Expression data from soybean seed compartments with embryos at the globular stage
  • organism-icon Glycine max
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon Affymetrix Soybean Genome Array (soybean)

Description

We microdissected each compartment from 6-micron paraffin sections using the Leica AS LMD system to identify all genes active in different compartments of a soybean seed containing globular-stage embryos.

Publication Title

Using genomics to study legume seed development.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE25319
Gene transcription profiles showing early systemic response to E. coli (k2bh2) infection in bovine liver
  • organism-icon Bos taurus
  • sample-icon 53 Downloadable Samples
  • Technology Badge Icon Affymetrix Bovine Genome Array (bovine)

Description

We studied the response to infection and associated perturbations to the bovine livers normal function by examining gene transcription data from liver biopsies collected following an E. coli infection in the udder of primiparous dairy cows. This is the first study to examine gene transcription responses to systemic infection by the E. coli bacterium in dairy cows. First, we verified that the inoculation protocol resulted in systemic infection in the cows. This was done based on records on three clinical symptoms: body temperature and amount of E. coli bacteria and leukocytes in milk samples. Second, we examined gene transcription patterns underlying the clinical traits. Gene transcription levels at times of peak values for the clinical traits were estimated in the liver to study indications of an acute phase response to systemic E. coli infection in the cows. Finally, we compared gene transcription responses to E. coli infection and lipopolysaccaride (LPS) inoculation.

Publication Title

Transcriptional profiling of the bovine hepatic response to experimentally induced E. coli mastitis.

Sample Metadata Fields

Sex, Specimen part, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact