refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 511 results
Sort by

Filters

Technology

Platform

accession-icon SRP118315
poly-A RNA profiling of Drosophila neural stem cells (type I NBs) and GMCs of different ages reveal genes involved in cell fate stabilization
  • organism-icon Drosophila melanogaster
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500, Illumina HiSeq 2000

Description

Drosophila melanogaster neural stem cells (neuroblasts [NBs]) divide asymmetrically by differentially segregating protein determinants into their daughter cells. Although the machinery for asymmetric protein segregation is well understood, the events that reprogram one of the two daughter cells toward terminal differentiation are less clear. In this study, we use time-resolved transcriptional profiling to identify the earliest transcriptional differences between the daughter cells on their way toward distinct fates. By screening for coregulated protein complexes, we identify vacuolar-type H+–ATPase (v-ATPase) among the first and most significantly down-regulated complexes in differentiating daughter cells. We show that v-ATPase is essential for NB growth and persistent activity of the Notch signaling pathway. Our data suggest that v-ATPase and Notch form a regulatory loop that acts in multiple stem cell lineages both during nervous system development and in the adult gut. We provide a unique resource for investigating neural stem cell biology and demonstrate that cell fate changes can be induced by transcriptional regulation of basic, cell-essential pathways. Overall design: Comparison of transcriptomes of wild-type type I NBs and GMCs of different ages (1.5h, 3h or 5h old) isolated by FACS from Drosophila melanogaster larval brains.

Publication Title

Time-resolved transcriptomics in neural stem cells identifies a v-ATPase/Notch regulatory loop.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP119402
The tumor suppressor Brat controls neuronal lineages by inhibiting the transcription factors Deadpan and Zelda
  • organism-icon Drosophila melanogaster
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

The TRIM-NHL protein Brain tumor (Brat) acts as a tumor suppressor in the Drosophila brain, but how it suppresses tumor formation is not completely understood. Here, we combine temperature controlled brat RNAi with transcriptome analysis to identify the immediate brat targets in Drosophila neuroblasts. Besides the known target Deadpan (Dpn), our experiments identify the transcription factor Zelda (Zld) as a critical target of brat. Our data show that Zld is expressed in neuroblasts and required to allow re-expression of Dpn in transit amplifying intermediate neural progenitors. Upon neuroblast division, Brat is enriched in one daughter cell where its NHL domain directly binds to specific motifs in the 3'UTR of dpn and zld mRNA to mediate their degradation. In brat mutants, both Dpn and Zld continue to be expressed, but inhibition of either transcription factor prevents tumorigenesis. Our genetic and biochemical data indicate that Dpn inhibition requires higher Brat levels than Zld inhibition and suggest a model where stepwise post-transcriptional inhibition of distinct factors ensures sequential generation of fates in a stem cell lineage. Overall design: Comparison of transcriptomes of Drosophila melanogaster control and brat RNAi larval brain type II neural stem cell lineages.

Publication Title

The tumor suppressor Brat controls neuronal stem cell lineages by inhibiting Deadpan and Zelda.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP132872
Targeted mutagenesis recapitulates brain tumor initiation in cerebral organoids (RNA-seq data set: 130d)
  • organism-icon Homo sapiens
  • sample-icon 34 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Introduction of brain tumor-relevant genetic aberrations initiates different subtypes of brain tumor-like neoplasms in cerebral organoids Overall design: Comparison of abundances (TPM) from different brain tumor organoid groups

Publication Title

Author Correction: Genetically engineered cerebral organoids model brain tumor formation.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP112726
Targeted mutagenesis recapitulates brain tumor initiation in cerebral organoids (RNA-seq data set: 45d)
  • organism-icon Homo sapiens
  • sample-icon 26 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Introduction of brain tumor-relevant genetic aberrations initiates different subtypes of brain tumor-like neoplasms in cerebral organoids Overall design: Comparison of transcriptomes from different brain tumor organoid groups

Publication Title

Author Correction: Genetically engineered cerebral organoids model brain tumor formation.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP073683
Guided self-organization recapitulates tissue architecture in a bioengineered brain organoid model
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Engineered brain organoids (enCORs) exhibit reproducible neural differentiation and forebrain regionalization. Overall design: Comparison of transcriptomes from bioengineered micropatterned enCORs and spheroids at 20 days and 60 days

Publication Title

Guided self-organization and cortical plate formation in human brain organoids.

Sample Metadata Fields

Specimen part, Subject, Time

View Samples
accession-icon SRP056930
Uridylation of hairpin-RNAs by Tailor confines the emergence of miRNAs in Drosophila
  • organism-icon Drosophila melanogaster
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Uridylation of diverse RNA species represents an emerging theme in post-transcriptional gene regulation. In the microRNA pathway, such modifications regulate small RNA biogenesis and stability in plants, worms and mammals. Here, we report the first uridylyltransferase that acts on small RNAs in Drosophila, which we refer to as Tailor. Tailor is the source for the majority of 3´ end-modifications in microRNAs and predominantly targets precursor-hairpins. Uridylation modulates the characteristic two-nucleotide 3´ overhangs of microRNA hairpins, which regulates processing by Dicer-1 and destabilizes RNA hairpins. Furthermore, Tailor preferentially uridylates mirtron-hairpins, thereby impeding the production of non-canonical microRNAs. Mirtron-selectivity is explained by unique primary sequence specificity of Tailor, selecting RNA substrates ending with a 3´ guanosine, a feature not previously observed for TUTases. In contrast to mirtrons, conserved Drosophila pre-miRNAs are significantly depleted in 3´ guanosine, thereby escaping regulatory uridylation. Our data support the hypothesis that evolutionary adaptation to pre-miRNA uridylation shapes the nucleotide composition of pre-miRNA 3´ ends. Hence, hairpin-uridylation may serve as a barrier for the de novo creation of miRNAs in Drosophila. Overall design: mRNA sequencing of Drosophila S2 cells (3-times; control libraries) and three biological replicates of S2 cells stably depleted of CG1091/Tailor by CRISPR/Cas9

Publication Title

Uridylation of RNA Hairpins by Tailor Confines the Emergence of MicroRNAs in Drosophila.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP013767
Transcriptome analysis of Drosophila neural stem cells reveals a transcriptional network for self-renewal.
  • organism-icon Drosophila melanogaster
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II, Illumina HiSeq 2000

Description

Drosophila neuroblasts have emerged as a model for stem cell biology that is ideal for genetic analysis but is limited by the lack of cell-type specific gene expression data. Here, we describe a methodology to isolate large numbers of pure neuroblasts and differentiating neurons that retain both cell cycle and lineage characteristics. We determine transcriptional profiles by mRNA sequencing and identify 28 predicted neuroblast specific transcription factors, which can be arranged in a network containing hubs for Notch signaling, growth control and chromatin regulation. Overexpression and RNAi for these factors identify Klumpfuss as a regulator of self-renewal. We show that loss of Klu function causes premature differentiation while overexpression results in the formation of transplantable brain tumors. Our data represent a valuable resource for Drosophila developmental neurobiology and we describes methodology that can be applied to other invertebrate stem cell lineages as well. Overall design: comparison of transcriptomes of Drosophila melanogaster larval neuroblasts and their differentiated daughter cells (neurons)

Publication Title

FACS purification and transcriptome analysis of drosophila neural stem cells reveals a role for Klumpfuss in self-renewal.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP131953
Human cytotrophoblast organoids
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Human cytotrophoblast organoid cultures were established from the villous trophoblast of first trimester placentas. We analyzed the global expression profile of the cytotrophoblast organoids (CTB-ORG) and compared to the profile of the tissue of origin i.e. villous cytotrophoblast (vCTB) as well as to differentiated syncytiotrophoblast (STB) and placental fibroblasts (FIB). Overall design: We employed QuantSeq method to analyzed the global expression profile of the cytotrophoblast organoids (4 replicates, CTB-ORG 1-4) and compared to the profile of the tissue of origin i.e. villous cytotrophoblast (3 replicates, vCTB 1-3) as well as to in vitro differentiated syncytiotrophoblast (3 replicates, STB1-3) and placental fibroblasts (2 replicates, FIB 1-2).

Publication Title

Self-Renewing Trophoblast Organoids Recapitulate the Developmental Program of the Early Human Placenta.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE73710
Identification of selective lead compounds for treatment of high-ploidy breast cancer
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Increased ploidy is common in tumors but treatments for tumors with excess chromosome sets are not available. Here, we characterize high-ploidy breast cancers and identify potential anticancer compounds selective for the high-ploidy state. Among 354 human breast cancers, 10% have mean chromosome copy number exceeding 3, and this is most common in triple negative and HER2-positive types. Women with high-ploidy breast cancers have higher risk of recurrence and death in two patient cohorts, demonstrating that it represents an important group for improved treatment. Because high-ploidy cancers are aneuploid, rather than triploid or tetraploid, we devised a two-step screen to identify selective compounds. The screen was designed to assure both external validity on diverse karyotypic backgrounds and specificity for high-ploidy cell types. This screen identified novel therapies specific to high-ploidy cells. First, we discovered 8-azaguanine, an antimetabolite that is activated by hypoxanthine phosphoribosyltransferase (HPRT), suggesting an elevated gene-dosage of HPRT in high-ploidy tumors can control sensitivity to this drug. Second, we discovered a novel compound, 2,3-Diphenylbenzo[g]quinoxaline-5,10-dione (DPBQ). DPBQ activates p53 and triggers apoptosis in a polyploid-specific manner, but does not inhibit topoisomerase or bind DNA. Mechanistic analysis demonstrates that DPBQ elicits a hypoxia gene signature and its effect is replicated, in part, by enhancing oxidative stress. Structure-function analysis defines the core benzo[g]quinoxaline-5,10 dione as being necessary for the polyploid-specific effects of DPBQ. We conclude that polyploid breast cancers represent a high-risk subgroup and that DPBQ provides a functional core to develop polyploid-selective therapy.

Publication Title

Identification of Selective Lead Compounds for Treatment of High-Ploidy Breast Cancer.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE29055
Microarray skeletal muscle PPARbeta overexpressing mice
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

This experiment was conducted to identify target genes of the peroxisome proliferator-activated receptor beta (PPARb) in skeletal muscle of transgenic mice that overexpressed PPARb.

Publication Title

The nuclear receptor PPARβ/δ programs muscle glucose metabolism in cooperation with AMPK and MEF2.

Sample Metadata Fields

Age, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact