refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 511 results
Sort by

Filters

Technology

Platform

accession-icon GSE70881
Expression analysis of draculin (drl) expressing cells in embryonic zebrafish
  • organism-icon Danio rerio
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Zebrafish Gene 1.0 ST Array (zebgene10st)

Description

drl expression initiates during gastrulation and condenses as a band of cells at the prospective lateral embryo margin. In late epiboly, drl:EGFP is detectable as a band of scattered EGFP-fluorescent cells; after gastrulation, drl:EGFP-positive cells coalesce at the embryo margin that then in somitogenesis break down into the anterior and posterior lateral plate with subsequent cell migrations that form the posterior vascular/hematopoietic stripes and the anterior cardiovascular and myeloid precursors.

Publication Title

Chamber identity programs drive early functional partitioning of the heart.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE69775
Early gene expression of regenerating zebrafish hearts following water or atropine treatment
  • organism-icon Danio rerio
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Zebrafish Genome Array (zebrafish)

Description

We report global RNA expression profiles from whole zebrafish hearts 24 hours after ventricle amputation. Zebrafish were exposed to atropine or water following surgery.

Publication Title

Nerves Regulate Cardiomyocyte Proliferation and Heart Regeneration.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon E-MEXP-583
Transcription profiling of human normal progenitor cells mutated for RUNX1-RUNX1 during myeloid and erythroid development to identify genes disregulated by RUNX1-RUNX1
  • organism-icon Homo sapiens
  • sample-icon 32 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

In order to identify genes dysregulated by the aberrant transcriptional activity of RUNX1-RUNX1T1, we used microarrays to determine the effect of this mutation on gene expression during myeloid and erythroid development of normal human progenitor cells.

Publication Title

Transcriptional dysregulation mediated by RUNX1-RUNX1T1 in normal human progenitor cells and in acute myeloid leukaemia.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE5040
Polyamides alleviate transcription inhibition associated with long GAATTC repeats in Friedreichs ataxia
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Lymphoblast cells from a patient with Freidriech's Ataxia were incubated with pyrrole-imidazole polyamides targeted to the GAA triplet repeat in the intron 1. The polyamides were shown in cell culture to increase levels of endogenous frataxin mRNA. A normal sibling derived lymphoblast cell line was used as a control.

Publication Title

DNA sequence-specific polyamides alleviate transcription inhibition associated with long GAA.TTC repeats in Friedreich's ataxia.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE33373
Gene expression in Citrus sinensis fruit tissues harvested from huanglongbing-infected trees: comparison with girdled fruit
  • organism-icon Citrus sinensis
  • sample-icon 65 Downloadable Samples
  • Technology Badge Icon Affymetrix Citrus Genome Array (citrus)

Description

In this data set, we reported for the first time that huanglongbing disease (HLB) induces major changes in the expression of global genes in flavedo, vascular and juice vesicle tissues of citrus fruit.

Publication Title

Gene expression in Citrus sinensis fruit tissues harvested from huanglongbing-infected trees: comparison with girdled fruit.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE6299
Gene expression and cell cycle arrest in a rat keratinocyte cell line exposed to 56 Fe Ions
  • organism-icon Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

The purpose of the present work was to examine gene expression patterns in a rat keratinocyte line exposed to a 56Fe ion beam

Publication Title

Gene expression and cell cycle arrest in a rat keratinocyte line exposed to 56Fe ions.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE10745
HDAC Inhibitors Correct Frataxin Deficiency in a Friedreich Ataxia Mouse Model
  • organism-icon Mus musculus
  • sample-icon 48 Downloadable Samples
  • Technology Badge IconIllumina mouseRef-8 v1.1 expression beadchip

Description

Background: Friedreich ataxia, an autosomal recessive neurodegenerative and cardiac disease, is caused by abnormally low levels of frataxin, an essential mitochondrial protein. All Friedreich ataxia patients carry a GAA/TTC repeat expansion in the first intron of the frataxin gene, either in the homozygous state or in compound heterozygosity with other loss-of-function mutations. The GAA expansion inhibits frataxin expression through a heterochromatin-mediated repression mechanism. Histone modifications that are characteristic of silenced genes in heterochromatic regions occur at expanded alleles in cells from Friedreich ataxia patients, including increased trimethylation of histone H3 at lysine 9 and hypoacetylation of histones H3 and H4.

Publication Title

HDAC inhibitors correct frataxin deficiency in a Friedreich ataxia mouse model.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP062702
Potent and targeted activation of HIV-1 using the CRISPR/Cas9 activator Complex
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

Integration of the HIV-1 provirus in the host genome ensures a persistent supply of latently infected cells. This latent reservoir is recalcitrant to antiretroviral therapy (ART) making lifelong treatment the only option for patients. The “shock and kill” strategy aims to eradicate latent HIV by reactivating proviral gene expression followed by ART treatment. Gene specific transcriptional activation can be achieved using the RNA-guided CRISPR-Cas9 system comprising small guide RNAs (sgRNAs) with a nuclease deficient Cas9 mutant (dCas9) fused to the VP64 transactivation domain (dCas9-VP64).  We engineered this system to target 23 sites within the LTR promoter of HIV-1 and identified a “hotspot” for activation. We studied the functionality of activating sgRNAs to transcriptionally modulate the latent proviral genome across multiple different in vitro latency cell models including several J-Lat, ACH2 J1.1 and the CEM T cell model comprising a single clonal population of integrated mCherry-IRES-Tat from a full-length HIV LTR (LChIT).  While we observed variable responses of latent cell models to well-characterized chemical stimuli, we detected consistent efficient activation of latent virus mediated by activator sgRNAs.  In addition, transcriptome analysis of chemically treated cells revealed massive non-specific gene dysregulation whereas by comparison, dCas9-VP64/sgRNAs induced specific activation of the integrated provirus.  In conclusion, we show the potential for CRISPR-mediated gene activation systems to provide enhanced efficiency and specificity in a targeted latency reactivation strategy. This represents a promising approach to a “functional cure” of HIV/AIDS. Overall design: Three experimental conditions (sgRNA control, TNF treated and sgRNA against the LTR of HIV-1) were analyzed in triplicate using two sequencing lanes

Publication Title

Potent and Targeted Activation of Latent HIV-1 Using the CRISPR/dCas9 Activator Complex.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP150747
Identification of cell type specfici markers for type I and type II Hair cells in the mouse utricle using single cell RNAseq
  • organism-icon Mus musculus
  • sample-icon 112 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1500, Illumina HiSeq 1000

Description

Single cell RNAseq analysis of hair cells isolated from the mouse utricle at three postnatal time points Overall design: Utricular hair cells were isolated at P12 (49 cells) and P100 (23 cells) and then combined with a previously published single cell data set (samples from GSE71982) containing 35 utricular hair cells isolated at P1 (Burns et al., 2015) The previously published single cell P1 samples have been re-normalized. These samples are included in this series and all processed data are available in the file ute_normalized_data.txt, available at the foot of this record.

Publication Title

Characterization of spatial and temporal development of Type I and Type II hair cells in the mouse utricle using new cell-type-specific markers.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP043999
RNA seq analysis of day of pregnancy 14 ovine conceptuses
  • organism-icon Ovis aries
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIon Torrent Proton

Description

RNA seq analysis was conducted to determine gene expression in the day 14 ovine conceptus. This was used in conjunction with the day 14 PPARG ChIP-seq analysis to identify genes bound by PPARG which were also expressed or not expressed in the day 14 conceptus. Understanding changes in gene expression during early pregnancy is critical to improving fertility and reproductive efficiency in ruminants. Overall design: RNA seq analysis of 4 conceptuses from 4 individual Day 14 pregnant columbia/rambouillet crossbred ewes

Publication Title

Biological Roles of Hydroxysteroid (11-Beta) Dehydrogenase 1 (HSD11B1), HSD11B2, and Glucocorticoid Receptor (NR3C1) in Sheep Conceptus Elongation.

Sample Metadata Fields

Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact