refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 511 results
Sort by

Filters

Technology

Platform

accession-icon E-MEXP-209
Transcription profiling of wounds from ovariectomized MIF null mice and controls to investigate the role of MIF during wound healing using BALB/C MIF null mice
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

The aim of this experiment was to investigate the role of MIF during wound healing using BALB/C MIF null mice and in the context of reduced estrogen-associated impaired healing using ovariectomized mice (a mouse model of age-associated delayed healing). Ageing is associated with delayed cutaneous wound healing resulting from reduced estrogen levels. Macrophage migration inhibitory factor (MIF - NCBI RefSeq: NM_010798) is thought to mediate the effects of estrogen on wound healing. Gene expression was compared between wounds from ovariectomized MIF null mice and controls.

Publication Title

Macrophage migration inhibitory factor: a central regulator of wound healing.

Sample Metadata Fields

Sex, Age, Specimen part, Subject

View Samples
accession-icon SRP041252
Effects of LKB1/STK11 expression on MDA-MB-231 triple-negative breast cancer cells
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

MDA-MB-231 cells transfected with pcDNA-vector or pcDNA-LKB1 were analyzed for changes in gene expression. Results provide insight into genes regulated by LKB1 signaling with implications in tumor and metastasis suppression in breast cancer. Overall design: 4 samples, duplicates of -vector and -LKB1 stable cell lines

Publication Title

Regulation of triple-negative breast cancer cell metastasis by the tumor-suppressor liver kinase B1.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE19777
Antisense miRNA-221/222 (si221/222) and control inhibitor (GFP) treated fulvestrant-resistant breast cancer cells
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Full title: Expression data from antisense miRNA-221/222 (si221/222) and control inhibitor (GFP) treated fulvestrant-resistant breast cancer cells

Publication Title

MicroRNA-221/222 confers breast cancer fulvestrant resistance by regulating multiple signaling pathways.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon SRP174204
Neonatal and adult human testis defined at the single-cell level
  • organism-icon Homo sapiens
  • sample-icon 126 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

Spermatogenesis has been well studied in rodents and invertebrates, but remains poorly understood in humans. As a step towards illuminating human spermatogenesis, we used single-cell RNA-sequencing (scRNAseq) analysis to analyze neonatal and adult human testes. Clustering analysis of neonatal testes revealed 3 germ subsets, including cells with characteristics of primordial germ cells (PGCs), and more differentiated cells with gene expression profiles similar with adult spermatogonial stem cells (SSCs). We identified markers for these neonatal subsets, including protein markers for the PGC-like (PGCL) subset. Clustering analysis of the adult testis revealed 9 germ and 3 somatic cell subsets. Among the germ cell clusters are 4 undifferentiated spermatogonia (SPG) states, each marked by specific genes. One of the SPG states has characteristics suggesting it is enriched for SSCs. We identified protein markers specific for this state, including cell-surface proteins that we used to enrich for these cells. We mapped the timeline of male germ cell development from PGCs through fetal germ cells to differentiating adult SPG stages. We also defined somatic cell subsets in the human testis and traced their developmental trajectories. Together, our data provides a blueprint for understanding the development of the male germline and supporting somatic cells in humans. The germ cell subset markers we identified are candidates to be used for clinical applications, including SSC therapy for treating infertility.  Overall design: Single cell sequencing from two neonatal and two adult testicular cells was performed. Cells were either enriched for ITGA6 expression or unfractionated before GEM capture

Publication Title

The Neonatal and Adult Human Testis Defined at the Single-Cell Level.

Sample Metadata Fields

Age, Specimen part, Subject

View Samples
accession-icon GSE32373
Gene expression analysis of OX40-triggered mouse Treg
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

Regulatory T (Treg) maintain the tumor microenvironment in an immunosuppressive state preventing effective anti-tumor immune response. A possible strategy to overcome Treg cell suppression focuses on OX40, a costimulatory molecule expressed constitutively by Treg cells while induced in activated effector T (Teff) cells. OX40 stimulation by the agonist mAb OX86 inhibits Treg cell suppression and boosts Teff cell activation. Here we uncover the mechanisms underlying the therapeutic activity of OX86 treatment dissecting its distinct effects on Treg and on effector memory T (Tem) cells, which are the most abundant CD4+ populations strongly expressing OX40 at the tumor site. In response to OX86, tumor-infiltrating Treg cells produced significantly less interleukin 10 (IL-10), possibly in relation to a decrease in the transcription factor IRF1. Tem cells responded to OX86 by upregulating surface CD40L expression, providing a licensing signal to dendritic cells (DCs). The CD40L/CD40 axis was required for Tem cell-mediated in vitro DC maturation and in vivo DC migration. Accordingly, OX86 treatment was no longer therapeutic in CD40 KO mice. In conclusion, following OX40 stimulation, blockade of Treg cell suppression and enhancement of the Tem cell adjuvant effect both concurred to free DCs from immunosuppression and to activate the immune response against the tumor.

Publication Title

Intratumor OX40 stimulation inhibits IRF1 expression and IL-10 production by Treg cells while enhancing CD40L expression by effector memory T cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE70881
Expression analysis of draculin (drl) expressing cells in embryonic zebrafish
  • organism-icon Danio rerio
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Zebrafish Gene 1.0 ST Array (zebgene10st)

Description

drl expression initiates during gastrulation and condenses as a band of cells at the prospective lateral embryo margin. In late epiboly, drl:EGFP is detectable as a band of scattered EGFP-fluorescent cells; after gastrulation, drl:EGFP-positive cells coalesce at the embryo margin that then in somitogenesis break down into the anterior and posterior lateral plate with subsequent cell migrations that form the posterior vascular/hematopoietic stripes and the anterior cardiovascular and myeloid precursors.

Publication Title

Chamber identity programs drive early functional partitioning of the heart.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon SRP096954
Genome-wide maps of metabolic labeled RNA in Drosophila S2 cells.
  • organism-icon Drosophila melanogaster
  • sample-icon 11 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000, Illumina HiSeq 2500

Description

We report the application of ultrashort metabolic labeling of RNA for high-throughput profiling of RNA processing in Drosophila S2 cells. Overall design: Examination of 3 different labeling timepoints in Drosophila S2 cells.

Publication Title

The kinetics of pre-mRNA splicing in the <i>Drosophila</i> genome and the influence of gene architecture.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP065286
GATA-1 and heme regulate the erythroid cell transcriptome.
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Alas2 gene encodes the rate-limiting enzyme in heme biosynthesis. CRISPR/Cas9-mediated ablation of two Alas2 intronic cis-elements strongly reduced GATA-1-induced Alas2 transcription, heme biosynthesis, and GATA-1 regulation of other vital constituents of the erythroid cell transcriptome. Bypassing Alas2 function in Alas2 cis-element-mutant (double mutant) cells by providing its catalytic product 5-aminolevulinic acid (5-ALA) rescued heme biosynthesis and the GATA-1-dependent genetic network. We discovered a GATA factor- and heme-dependent circuit that establishes the erythroid cell transcriptome. Overall design: G1E-ER-GATA-1 WT and double mutant cells were examined. Untreated WT, beta-estradiol-treated WT, beta-estradiol-treated double-mutant, and beta-estradiol/5-ALA-treated double-mutant cells were subjected to RNA-seq.

Publication Title

Mechanism governing heme synthesis reveals a GATA factor/heme circuit that controls differentiation.

Sample Metadata Fields

Treatment, Subject

View Samples
accession-icon GSE7476
Analysis of clinical bladder cancer classification according to microarray expression profiles
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Using Affymetrix microarray technology we analyzed the gene expression profiles of the most important pathological categories of bladder cancer in order to detect potential marker genes. Applying an unsupervised cluster algorithm we observed clear differences between tumor and control samples, as well as between superficial and muscle invasive tumors. According to cluster results, the T1 high grade tumor type presented a global genetic profile which could not be distinguished from invasive cases. We described a new measure to classify differentially expressed genes and we compared it against the B-rank statistic as a standard method. According to this new classification method, the biological functions overrepresented in top differentially expressed genes when comparing tumor versus control samples were associated with growth, differentiation, immune system response, communication, cellular matrix and enzyme regulation. Comparing superficial versus invasive samples, the most important overrepresented biological category was growth and, specifically, DNA synthesis and mitotic cytoskeleton. On the other hand, some under expressed genes have been clearly related to muscular tissue contamination in control samples. Finally, we demonstrated that a pool strategy could be a good option to detect the best differentially expressed genes between two compared conditions.

Publication Title

DNA microarray expression profiling of bladder cancer allows identification of noninvasive diagnostic markers.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE44401
Transcription factors MYOCD, SRF, Mesp1 and SMARCD3 significantly enhance the cardio-inducing effect of GATA4, TBX5, and MEF2C during direct cellular reprogramming
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Transient over-expression of defined combinations of master regulator genes can effectively induce cellular reprogramming: the acquisition of an alternative predicted phenotype from a differentiated cell lineage. This can be of particular importance in cardiac regenerative medicine wherein the heart lacks the capacity to heal itself, but simultaneously contains a large pool of fibroblasts. In this study we determined the cardio-inducing capacity of ten transcription factors to actuate cellular reprogramming of mouse embryonic fibroblasts into cardiomyocyte-like cells. Over-expression of transcription factors MYOCD and SRF alone or in conjunction with Mesp1 and SMARCD3 significantly enhanced the basal but necessary cardio-inducing effect of the previously reported GATA4, TBX5, and MEF2C. In particular, combinations of five or seven transcription factors significantly enhanced the activation of cardiac reporter vectors, and induced an upregulation of cardiac-specific genes. Global gene expression analysis also demonstrated a significantly greater cardio-inducing effect when the transcription factors MYOCD and SRF were used. Detection of cross-striated cells was highly dependent on the cell culture conditions and was enhanced by the addition of valproic acid and JAK inhibitor. Although we detected Ca2+ transient oscillations in the reprogrammed cells, we did not detect significant changes in resting membrane potential or spontaneously contracting cells. This study further elucidates the cardio-inducing effect of the transcriptional networks involved in cardiac cellular reprogramming, contributing to the ongoing rational design of a robust protocol required for cardiac regenerative therapies.

Publication Title

Transcription factors MYOCD, SRF, Mesp1 and SMARCD3 enhance the cardio-inducing effect of GATA4, TBX5, and MEF2C during direct cellular reprogramming.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact