refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 460 results
Sort by

Filters

Technology

Platform

accession-icon SRP056330
Stem cell and neurogenic gene-expression profiles link prostate basal cells to aggressive prostate cancer
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

The prostate gland mainly contains basal and luminal cells constructed as a pseudostratified epithelium. Annotation of prostate epithelial transcriptomes provides a foundation for discoveries that can impact disease understanding and treatment. Here, we describe a whole-genome transcriptome analysis of human benign prostatic basal and luminal populations by using deep RNA sequencing. Combined with comprehensive molecular and biological characterizations, we show that the differential gene expression profiles account for their distinct functional phenotypes. Strikingly, in contrast to luminal cells, basal cells preferentially express gene categories associated with stem cells, neural and neuronal development and RNA processing. Consistent with their expression profiles, basal cells functionally exhibit intrinsic stem-like and proneural properties with enhanced ribosome RNA (rRNA) transcription activity. Of clinical relevance, the treatment failed castration-resistant and anaplastic prostate cancers molecularly resemble a basal-like phenotype. Therefore, we link the cell-type specific gene signatures to subtypes of prostate cancer development, and identify genes associated with patient clinical outcome. Overall design: Human total RNA profiles of 3 pairs of benign prostatic basal and luminal populations freshly purified from prostate tissues of three prostate cancer patients by deep RNA-seq.

Publication Title

Stem cell and neurogenic gene-expression profiles link prostate basal cells to aggressive prostate cancer.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP156448
The MMTV-Wnt1 murine model produces two phenotypically distinct subtypes of mammary tumors with unique therapeutic responses to an EGFR inhibitor (RNA-seq)
  • organism-icon Mus musculus
  • sample-icon 21 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The Wnt gene family is an evolutionarily conserved group of proteins that regulate cell growth, differentiation, and stem cell self-renewal. Aberrant Wnt signaling in human breast tumors has been proposed to be an attractive drug target, especially in the basal-like subtype where canonical Wnt signaling is both enriched and predictive of poor clinical outcomes. The development of effective Wnt based therapeutics, however, has been slowed in part by a limited understanding of the context dependent nature with which these aberrations influence breast tumorigenesis. We recently reported that MMTV-Wnt1 mice, which are an established model for studying Wnt signaling in breast tumors, develop two subtypes of tumors by gene expression classification: Wnt1-EarlyEx and Wnt1-LateEx. Here, we extend this initial observation and show that Wnt1-EarlyEx tumors had high expression of canonical Wnt, non-canonical Wnt, and EGFR signaling pathway signatures. Therapeutically, Wnt1-EarlyEx tumors had a dynamic reduction in tumor volume when treated with an EGFR inhibitor. Wnt1-EarlyEx tumors also had primarily Cd49fpos/Epcamneg FACS profiles, but were unable to be serially transplanted into wild-type FVB female mice. Wnt1-LateEx tumors, conversely, had a bloody gross pathology, which was highlighted by the presence of 'blood lakes' by H&E staining. These tumors had primarily Cd49fpos/Epcampos FACS profiles, but also contained a secondary Cd49fpos/Epcamneg subpopulation. Wnt1-LateEx tumors were enriched for activating Hras1 mutations and were capable of reproducing tumors when serially transplanted into wild-type FVB female mice. This study definitely shows that the MMTV-Wnt1 mouse model produces two phenotypically distinct subtypes of mammary tumors. Importantly, these subtypes differ in their therapeutic response to an EGFR inhibitor, suggesting that a subset of human tumors with aberrant Wnt signaling may also respond to erlotinib. Overall design: Agilent gene expression microarrays were performed comparing RNA from FVB/n MMTV-Wnt1 mammary tumors to a common mouse reference sample. Agilent CGH microarrays were performed comparing DNA from FVB/n MMTV-Wnt1 mammary tumors to DNA from FVB wild-type mice. RNAseq libraries were prepared from FVB/n MMTV-Wnt1 mammary tumors using a TruSeq RNA kit before being submitted to the Lineberger Comprehensive Cancer Center Genomics Core to be run on the Illumina HiSeq 2000.

Publication Title

The MMTV-Wnt1 murine model produces two phenotypically distinct subtypes of mammary tumors with unique therapeutic responses to an EGFR inhibitor.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP149997
Saccharomyces cerevisiae W303 Raw sequence reads
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Transcriptome study of 2 Saccharomyces cerevisiae W303 derivatives, one carrying GFP (control) and one carrying aSyn-GFP

Publication Title

Different 8-hydroxyquinolines protect models of TDP-43 protein, α-synuclein, and polyglutamine proteotoxicity through distinct mechanisms.

Sample Metadata Fields

Specimen part, Disease, Cell line

View Samples
accession-icon GSE8646
The Hay Wells Syndrome-Derived TAp63alphaQ540L Mutant Has Impaired Transcriptional and Cell Growth Regulatory Activity
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

p63 mutations have been associated with several human hereditary disorders characterized by ectodermal dysplasia such as EEC syndrome, ADULT syndrome and AEC syndrome . The location and functional effects of the mutations that underlie these syndromes reveal a striking genotype-phenotype correlation. Unlike EEC and ADULT that result from missense mutations in the DNA-binding domain of p63, AEC is solely caused by missense mutations in the SAM domain of p63. We report a study on the TAp63a isoform, the first to be expressed during development of the embryonic epithelia, and on its naturally occurring Q540L mutant derived from an AEC patient. To assess the effects of the Q540L mutation, we generated stable cell lines expressing TAp63a wt, DeltaNp63 alpha or the TAp63 alpha-Q540L mutant protein and used them to systematically compare the cell growth regulatory activity of the mutant and wt p63 proteins and to generate, by microarray analysis, a comprehensive profile of differential gene expression. We found that the Q540L substitution impairs the transcriptional activity of TAp63a and causes misregulation of genes involved in the control of cell growth and epidermal differentiation.

Publication Title

The Hay Wells syndrome-derived TAp63alphaQ540L mutant has impaired transcriptional and cell growth regulatory activity.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP108902
Dihydropyrimidine-thiones and clioquinol synergize to target b-amyloid cellular pathologies through a metal-dependent mechanism
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

DHPM-thiones rescue Ab-mediated toxicity in a metal-dependent manner that strongly synergizes with clioquinol, a known metal-binding and cytoprotective compound. RNA-seq experiments reveal a modest, yet specific effect on metal-responsive genes that do not change with the inactive control compound. Overall design: Treatment of biological replicates with DMSO, 0.8 uM clioquinol, or 20 uM 10{3,3,1} (DHPM-thione) for ~6 hours prior to harvesting of cells and isolation of total RNA.

Publication Title

Dihydropyrimidine-Thiones and Clioquinol Synergize To Target β-Amyloid Cellular Pathologies through a Metal-Dependent Mechanism.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE62232
Large-scale gene expression profiling of 81 hepatocellular carcinomas
  • organism-icon Homo sapiens
  • sample-icon 90 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Hepatocellular carcinoma (HCC) is ranked second in cancer-associated deaths worldwide. Most cases of HCC are secondary to either a viral hepatitis infection (hepatitis B or C) or cirrhosis (alcoholism being the most common cause of hepatic cirrhosis). It is a complex and heterogeneous tumor due to activation of multiple cellular pathways and molecular alterations.

Publication Title

Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Disease stage

View Samples
accession-icon SRP047290
Molecular signatures of heterogeneous stem cell populations are resolved by linking single cell functional assays to single cell gene expression
  • organism-icon Mus musculus
  • sample-icon 96 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

The discovery of significant heterogeneity in the self-renewal durability of adult haematopoietic stem cells (HSCs) has challenged our understanding of the molecules involved in population maintenance throughout life. Gene expression studies in bulk populations are difficult to interpret since multiple HSC subtypes are present and HSC purity is typically less than 50% of the input cell population. Numerous groups have therefore turned to studying gene expression profiles of single HSCs, but again these studies are limited by the purity of the input fraction and an inability to directly ascribe a molecular program to a durable self-renewing HSC. Here we combine single cell functional assays with flow cytometric index sorting and single cell gene expression assays to gain the first insight into the gene expression program of HSCs that possess durable self-renewal. This approach can be used in other stem cell systems and sets the stage for linking key molecules with defined cellular functions. Overall design: single-cell RNA-Seq of haematopoietic stem cells

Publication Title

Combined Single-Cell Functional and Gene Expression Analysis Resolves Heterogeneity within Stem Cell Populations.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE89793
Loss of the Inhibitory Immune Checkpoint CD85j/LILRB1 on Malignant Plasma Cells Contributes to Immune Escape in Multiple Myeloma
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U219 Array (hgu219)

Description

Mechanisms of immune regulation may control proliferation of aberrant plasma cells (PCs) in patients with the asymptomatic monoclonal gammopathy of undetermined significance (MGUS) preventing progression to active multiple myeloma (MM). We investigated the role of CD85j (LILRB1), an inhibitory immune checkpoint for B cell function, in MM pathogenesis.

Publication Title

Loss of the Immune Checkpoint CD85j/LILRB1 on Malignant Plasma Cells Contributes to Immune Escape in Multiple Myeloma.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE19298
Gene expression timecourse in zebrafish whole eye in response to optic nerve crush
  • organism-icon Danio rerio
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Zebrafish Genome Array (zebrafish)

Description

It is well-established that neurons in the adult mammalian central nervous system are terminally differentiated and, if injured, will be unable to regenerate their connections. In contrast to mammals, zebrafish and other teleosts display a robust neuroregenerative response. Following optic nerve crush (ONX), retinal ganglion cells (RGC) regrow their axons to synapse with topographically correct targets in the optic tectum, such that vision is restored in ~21 days. What accounts for these differences between teleostean and mammalian responses to neural injury is not fully understood. A time course analysis of global gene expression patterns in the zebrafish eye after optic nerve crush can help to elucidate cellular and molecular mechanisms that contribute to a successful neuroregeneration.

Publication Title

Time Course Analysis of Gene Expression Patterns in Zebrafish Eye During Optic Nerve Regeneration.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE26673
Expression data from Burkitt lymphoma cases
  • organism-icon Homo sapiens
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Burkitt lymphoma is the commonest cancer in children in Africa. We compared the gene expression profiles of African Burkitt lymphoma patients with those of cases presented in Western countries in both immunocompetent (sporadic Burkitt lymphoma) and HIV-infected patients (immunodeficiency associated Burkitt lymphoma).

Publication Title

Gene expression analysis uncovers similarity and differences among Burkitt lymphoma subtypes.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact