refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 484 results
Sort by

Filters

Technology

Platform

accession-icon GSE5130
Accurate and precise transcriptional profiles from 50 pg of total RNA or 100 flow-sorted primary lymphocytes
  • organism-icon Mus musculus
  • sample-icon 103 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

We have developed a total RNA amplification and labeling strategy for use with Affymetrix GeneChips. Our protocol, which we denote BIIB, employs two rounds of linear T7 amplification followed by Klenow labeling to generate a biotinylated cDNA. In benchmarking studies using a titration of mouse universal total RNA, BIIB outperformed commercially available kits in terms of sensitivity, accuracy, and amplified target length, while providing equivalent results for technical reproducibility. BIIB maintained 50 and 44% present calls from 100 and 50 pg of total RNA, respectively. Inter- and intrasample precision studies indicated that BIIB produces an unbiased and complete expression profile within a range of 5 ng to 50 pg of starting total RNA. From a panel of spiked exogenous transcripts, we established the BIIB linear detection limit to be 20 absolute copies. Additionally, we demonstrate that BIIB is sensitive enough to detect the stochastic events inherent in a highly diluted sample. Using RNA isolated from whole tissues, we further validated BIIB accuracy and precision by comparison of 224 expression ratios generated by quantitative real-time PCR. The utility of our method is ultimately illustrated by the detection of biologically expected trends in a T cell/B cell titration of 100 primary cells flow sorted from a healthy mouse spleen.

Publication Title

Accurate and precise transcriptional profiles from 50 pg of total RNA or 100 flow-sorted primary lymphocytes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE58812
Gene-expression molecular subtyping of triple-negative breast cancer tumours: importance of immune response
  • organism-icon Homo sapiens
  • sample-icon 98 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Triple-negative (TN) breast cancers need to be refined in order to identify therapeutic subgroups of patients.

Publication Title

Gene-expression molecular subtyping of triple-negative breast cancer tumours: importance of immune response.

Sample Metadata Fields

Disease

View Samples
accession-icon GSE107613
Gene expression profile of juvenile R6/1 and N171-82Q brains
  • organism-icon Mus musculus
  • sample-icon 54 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Transcriptional dysregulation in Huntingtons disease (HD) is an early event that affects the expression of genes involved in survival and neuronal functions throughout the progression of the pathology. In the last years, extensive research has focused on epigenetic and chromatin-modifying factors as a causative explanation for such dysregulation, offering attractive targets for pharmacological therapies. In this work we examined the gene expression profiles in cortex, striatum, hippocampus and cerebellum of juvenile R6/1 and N171-82Q mice, two models of fast progressive HD, to retrieve the early transcriptional signatures associated with this pathology.These profiles showed significant coincidences with the transcriptional changes in the conditional knockout for the lysine acetyltransferase CBP in postmitotic forebrain neurons.

Publication Title

Early alteration of epigenetic-related transcription in Huntington's disease mouse models.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE75808
Differential Ly6C Expression after Renal Ischemia-Reperfusion Identifies Unique Macrophage Populations
  • organism-icon Mus musculus
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Macrophages are a heterogeneous cell type implicated in injury, repair, and fibrosis after AKI, but the macrophage population associated with each phase is unclear.results of this study in a renal ischemia-reperfusion injury model allow phenotype and function to be assigned to CD11b+/Ly6C+ monocyte/macrophage populations in the pathophysiology of disease after AKI.

Publication Title

Differential Ly6C Expression after Renal Ischemia-Reperfusion Identifies Unique Macrophage Populations.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP108353
Endoplasmic reticulum–mitochondria junction is required for iron homeostasis
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

The Endoplasmic Reticulum–Mitochondria Encounter Structure (ERMES) is a protein complex that tethers the two organelles and creates the physical basis for communication between them. ERMES functions in lipid and calcium exchange between the ER and mitochondria, mitochondrial protein import and maintenance of mitochondrial morphology and genome. Here we report that ERMES is also required for iron homeostasis. Loss of ERMES components activates an Aft1-dependent iron deficiency response even in iron-replete conditions, leading to accumulation of excess iron inside the cell. This function is independent of ERMES known roles in calcium regulation, phospholipid biosynthesis or mitochondrial biology. A mutation in the vacuolar protein sorting 13 (VPS13) gene that rescues the glycolytic phenotype of ERMES mutants suppresses the iron deficiency response and iron accumulation. Our study reveals that proper communication between the ER and mitochondria is required for appropriate maintenance of cellular iron levels. Overall design: various mutants

Publication Title

Endoplasmic reticulum-mitochondria junction is required for iron homeostasis.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE50440
Expression data from Saccharomyces cerevisiae histone H2A mutants
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

The N-terminal tail of histone H2A shows evolutionary changes that parallel genome size and aid chromatin compaction. As genome size increases, so does the number of arginines. In contrast, serines corellate with small genomes. Examples for such changes are arginine in position 11 and serine in position 15.

Publication Title

Evolution of histone 2A for chromatin compaction in eukaryotes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE56598
Wide methylation analysis in vestibular schwannoma
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Genome-wide methylation analysis in vestibular schwannomas shows putative mechanisms of gene expression modulation and global hypomethylation at the HOX gene cluster.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE54934
Global expression profile in a combined study in low grade meningiomas and schwannomas shows upregulation in PDGF, CDH1, SLIT2 and MET.
  • organism-icon Homo sapiens
  • sample-icon 65 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Background: Schwannomas and grade I meningiomas are non-metastatic neoplasms that shares the common mutation of gene NF2. They usually appear in Neurofibromatosis type 2 patients. Currently, there is no drug treatment available for both tumors, so the use of wide expression technologies is crucial to find those therapeutic targets.

Publication Title

Global expression profile in low grade meningiomas and schwannomas shows upregulation of PDGFD, CDH1 and SLIT2 compared to their healthy tissue.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE56597
Wide methylation analysis in vestibular schwannoma [Affymetrix exon level analysis]
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Vestibular schwannomas are intracranial tumors that affects unilateral and sporadically or bilateral when is associated to Neurofibromatosis type 2 syndrome. The hallmark of the disease is the biallelic inactivation by NF2 gene mutation or LOH of chromosome 22q, where this gene harbors. In this work, we used Infinium HumanMethylation 450K BeadChip microarrays in a series of 36 vestibular schwannomas, 4 non-vestibular schwannomas and 5 healthy nerves. Our results shows a trend to hypomethylation in schwannomas. Furthermore, HOX genes, located at 4 clusters in the genome, displayed hypomethylation in numerous CpG sites in vestibular but not in non-vestibular schwannomas. Additionally, several microRNA and protein-coding genes were found hypomethylated at promoter regions and confirmed by expression analysis; including miRNA-199a1, miRNA-21, MET and PMEPA1. We also detected methylation patterns that might be involved in alternative transcripts of several genes such as NRXN1 or MBP; that would increase the complexity of methylation-expression. Overall, our results shows specific epigenetic signatures in several coding genes and microRNA that could be used in the finding of potential therapeutic targets.

Publication Title

Genome-wide methylation analysis in vestibular schwannomas shows putative mechanisms of gene expression modulation and global hypomethylation at the HOX gene cluster.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP105773
Gene expression profiling of the octuple jazQ mycT mutant shows that the MYC transcription factors control expression of many genes mis-regulated in jazQ, and also identifies some MYC-indepedent expression changes
  • organism-icon Arabidopsis thaliana
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The quintuple jaz mutant jazQ and the triple myc mutant mycT affect plant defense and growth. We used RNA-sequencing to query the transcriptomes of jazQ and mycT, as well as the combined jazQ mycT octuple mutatant, and examined how these mutations alter the expression of genes mis-regulated in jazQ. The data highlight how jasmonate signaling pathways are largely governed by MYC transcription factors, but also highlight some MYC-independent expression patterns. Overall design: Analysis of Col-0 (wildtype), jazQ, mycT, and jazQ mycT (four genotypes), with three biological replicates per genotype - 12 total samples. This series contains the re-use of 6 samples from GSE79012 (Col-0 and jazQ).

Publication Title

Regulation of growth-defense balance by the JASMONATE ZIM-DOMAIN (JAZ)-MYC transcriptional module.

Sample Metadata Fields

Age, Specimen part, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact