refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 316 results
Sort by

Filters

Technology

Platform

accession-icon GSE73906
Gene Expression Profiles of 4 CRC PDX models treated by RSPO3 antagonist.
  • organism-icon Homo sapiens
  • sample-icon 34 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

RSPO is a WNT pathway activator and functions as a potent regulator of stem cell growth in colon. RSPO family members were produced by several human tumors representing multiple tumor types including ovarian, pancreatic, colon, breast and lung cancer. Specific monoclonal antibody antagonists of RSPO family members were developed. In human patient-derived tumor xenograft models, anti-RSPO treatment markedly inhibited tumor growth either as single agents or in combination with chemotherapy. Furthermore, blockade of RSPO signaling reduced the tumorigenicity of cancer cells based on serial transplantation studies.

Publication Title

Therapeutic Targeting of Tumor-Derived R-Spondin Attenuates β-Catenin Signaling and Tumorigenesis in Multiple Cancer Types.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE17696
Genechip analysis of bone marrow osteoprogenitors exposed to microgravity
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

In March 2006, murine Bone Marrow Stromal Cells (BMSC) were flown in the Soyuz 12S to the International Space Station to investigate the effects of microgravity on their osteogenic potential in a three-dimensional environment. BMSC were grown in porous bioceramic Skelite disks ( 9 mm x T 1.2 mm). The constructs were exposed to microgravity for ca. 8 days, then fixed for RNA extraction. While the flight experiment was performed in fully automated hardware inside the KUBIK incubator, one group of control samples were incubated inside manually operated hardwares (flight control), and the other control group was incubated under routine laboratory conditions (lab control). The altered gene expression profile was analyzed by Mouse Gene 1.0 ST array (Affymetrix) representing whole-transcript coverage. Each one of the 28853 genes is represented on the array by approximately 26 probes spread across the full length of the gene, providing a more complete and more accurate picture of gene expression than the 3 based expression array design.

Publication Title

Activation of nervous system development genes in bone marrow derived mesenchymal stem cells following spaceflight exposure.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE52108
Gene expression signature of EGR3 silencing in M12 human prostate cancer cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

EGR3 expression is upregulated in human prostate cancer compared to normal prostate tissue and is associated with absence of relapse, while low EGR3 expression in tumors is predicitive of disease relapse (Pio et al., PLOS One 2013; 8(1):e54096). However the function of EGR3 in prostate cancer is unknown. Human prostate cancer cells M12 containing high levels of EGR3 were used for shRNA-mediated silencing of EGR3. Gene expression analysis of EGR3 knockdown cells reveals a role in inflammation and the existence of a crosstalk with the NFkB pathway.

Publication Title

Early growth response 3 (Egr3) is highly over-expressed in non-relapsing prostate cancer but not in relapsing prostate cancer.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE64835
Identification of a New Cell Population Constitutively Circulating in Healthy Conditions and Endowed with a Homing Ability Toward Injured Sites
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Stem and progenitor cells are the critical units for tissue maintenance, regeneration, and repair. The activation of regenerative events in response to tissue injury has been correlated with mobilization of tissue-resident progenitor cells, which is functional to the wound healing process. However, until now there has been no evidence for the presence of cells with a healing capacity circulating in healthy conditions. We identified a rare cell population present in the peripheral blood of healthy mice that actively participates in tissue repair. These Circulating cells, with a Homing ability and involved in the Healing process (CH cells), were identified by an innovative flowcytometry strategy as small cells not expressing CD45 and lineage markers. Their transcriptome profile revealed that CH cells are unique and present a high expression of key pluripotency- and epiblast-associated genes. More importantly, CH-labeled cells derived from healthy Red Fluorescent Protein (RFP)-transgenic mice and systemically injected into syngeneic fractured wild-type mice migrated and engrafted in wounded tissues, ultimately differentiating into tissue-specific cells. Accordingly, the number of CH cells in the peripheral blood rapidly decreased following femoral fracture. These findings uncover the existence of constitutively circulating cells that may represent novel, accessible, and versatile effectors of therapeutic tissue regeneration.

Publication Title

Identification of a New Cell Population Constitutively Circulating in Healthy Conditions and Endowed with a Homing Ability Toward Injured Sites.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE30541
bFGF-selected Bone Marrow-derived Mesenchymal Stem Cells triggers the host response for bone regeneration
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The classical concept of bone marrow-derived mesenchymal stem cells (BM-MSC), intended as a uniform, broad potent population, is progressively being substituted by the idea that the bone marrow harbors heterogeneous populations of non-hematopoietic stem cells. This in vivo heterogeneity is also amplified by the different experimental strategies used to isolate/culture them. Among the exogenous factors described to affect MSC in vitro growth, basic-fibroblast growth factor (bFGF) is one of the most common growth factors used to expand stem cells. Moreover, it has been reported that its signaling is associated with the mainteinance of stemness of a variety of stem cells, included MSC. Using an ectopic model of bone regeneration, we have previously described that the implantation of cells with different commitment levels, differentially influences the capacity to recruit host cells, activating endogenous regenerative mechanisms. Due to its properties, we here demonstrate that the addition of bFGF to primary BM cultures, leads to the selection of specific subpopulations able to induce a different host regenerative response, when in vivo implanted in association with suitable ceramic scaffolds. Moreover, taking advantage of a multiparametric and comparative genomic and proteomic approach, it has been evaluated how different culture conditions combine to bring about appreciable changes in the secretome of the cells, that consequently influence their in vivo regenerative behaviour. The full comprehension of the regulatory mechanisms that rule the host response depending on the type and differentiative stage of the transplanted cells could help us to develop novel clinical strategies where host cells could directly contribute to regenerate the appropriate tissue.

Publication Title

The role of bFGF on the ability of MSC to activate endogenous regenerative mechanisms in an ectopic bone formation model.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE74513
The human amniotic fluid stem cell secretome counteracts doxorubicin-induced cardiotoxicity
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The anthracycline, doxorubicin (Dox), is widely used in oncology, but it may it may cause a cardiomyopathy which has dismal prognosis and cannot be effectively prevented. The secretome of multipotent human amniotic fluid-derived stem cells (hAFS) has previously been demonstrated to reduce ischemic cardiac damage. Here, it is shown that the hAFS conditioned medium (hAFS-CM) antagonizes senescence and apoptosis of cardiomyocytes and cardiac progenitor cells, two major features of Dox cardiotoxicity. Mechanistic studies with primary mouse neonatal cardiomyocytes reveal that hAFS-CM inhibition of Dox-elicited senescence and apoptosis is paralleled by decreased DNA damage and is associated with nuclear translocation of NF-kB and upregulation of a set of genes controlled by NF-kB, namely Il6 and Cxcl1, which promote cardiomyocyte survival, and Cyp1b1 and Abcb1, which encode for proteins involved in Dox metabolism and efflux, respectively. The PI3K/Akt signaling cascade, upstream of NF-kB, is potently activated by the hAFS-CM and pre-treatment with a PI3K inhibitor abrogates NF-kB accumulation into the nucleus, modulation of its target genes, and prevention of Dox-initiated senescence and apoptosis in response to the hAFS-CM. This work may lay the ground for the development of a stem cell-based paracrine therapy of chemotherapy-related cardiotoxicity.

Publication Title

The human amniotic fluid stem cell secretome effectively counteracts doxorubicin-induced cardiotoxicity.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE11581
Role of FAK, dominant-negative FAK, FAK-CD and FAKsiRNA in MCF-7 human breast cancer cell tumorigenesis
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that plays an important role in proliferation, motility, adhesion, invasion, angiogenesis, and survival signaling. Focal adhesion kinase has been shown to be overexpressed in many types of tumors, including breast cancer at early stages of tumorigenesis. To study the biological role of FAK in breast tumorigenesis, we used FAKsiRNA to down-regulate FAK in MCF-7 cell lines.

Publication Title

The direct effect of focal adhesion kinase (FAK), dominant-negative FAK, FAK-CD and FAK siRNA on gene expression and human MCF-7 breast cancer cell tumorigenesis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE72039
Defining the microglia response during the time course of chronic neurodegeneration
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

In order to study the microglia contribution in neurodegeneration more specifically we established a mouse model of prion disease in which the 79A murine prion strain was introduced by an intraperitoneal route into BALB/cJFms-EGFP/- mice, which express Enhanced Green Fluorescent Protein (EGFP) under control of the C-fms operon. Samples were taken at time points during disease progression and histological analysis of the brain and transcriptional analysis of isolated microglia was carried out. The analysis of isolated microglia revealed a disease specific, highly pro-inflammatory signature in addition to an up-regulation of genes associated with metabolism, respiratory stress and DNA repair. This study strongly supports the growing recognition of the importance of microglia within the prion disease process and identifies the nature of the response through gene expression analysis of isolated microglia.

Publication Title

Defining the Microglia Response during the Time Course of Chronic Neurodegeneration.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE84482
Proneurogenic ligands defined by modeling developing cortex growth factor communication networks
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

The neural stem cell decision to self-renew or differentiate is tightly regulated by its microenvironment. Here, we have asked about this microenvironment, focusing on growth factors in the embryonic cortex at a time when it is largely comprised of neural precursor cells (NPCs) and newborn neurons. We show that cortical NPCs secrete factors that promote their maintenance while cortical neurons secrete factors that promote differentiation. To define factors important for these activities, we used transcriptome profiling to identify ligands produced by NPCs and neurons, cell surface mass spectrometry to identify receptors on these cells, and computational modeling to integrate these data. The resultant model predicts a complex growth factor environment with multiple autocrine and paracrine interactions. We tested this communication model, focusing on neurogenesis, and identified IFN, Nrtn and glial-derived neurotrophic factor (GDNF) as ligands with unexpected roles in promoting neurogenic differentiation of NPCs in vivo.

Publication Title

Proneurogenic Ligands Defined by Modeling Developing Cortex Growth Factor Communication Networks.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE79737
A Glo1-methylglyoxal pathway that is perturbed in maternal diabetes regulates embryonic and adult neural stem cell pools in offspring
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

We used microarrays to compare the gene expression profile in cultured primary neurospheres derived from the subventricular zone of adult (2 m.o.) offspring of mothers treated with PBS or methylglyoxal during pregnancy

Publication Title

A Glo1-Methylglyoxal Pathway that Is Perturbed in Maternal Diabetes Regulates Embryonic and Adult Neural Stem Cell Pools in Murine Offspring.

Sample Metadata Fields

Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact