refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 174 results
Sort by

Filters

Technology

Platform

accession-icon GSE25096
HoxA3 is an apical regulator of hemogenic endothelium
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Iconmouse-6 v1.1 (Illumina), Agilent-014868 Whole Mouse Genome Microarray 4x44K G4122F (Feature Number version)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

HoxA3 is an apical regulator of haemogenic endothelium.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE25080
Genes regulated by HoxA3 in endothelial and hematopoietic progenitors
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Iconmouse-6 v1.1 (Illumina)

Description

We used a murine ES cell line in which HoxA3 expression is under control of a tetracycline-responsive element and differentiated these cells as embryoid bodies (EBs). Endothelial (Flk-1 VE-cadherin double positive, FV) and hematopoieitc progenitors (c-Kit CD41 double positive, K41) were isolated from differentiated EBs that had been induced for 6 hours by doxycycline (Dox) treatment.

Publication Title

HoxA3 is an apical regulator of haemogenic endothelium.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE22513
Markers of Taxane Sensitivity in Breast Cancer
  • organism-icon Homo sapiens
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The purpose of this study was to identify molecular markers of pathologic response to neoadjuvant paclitaxel/radiation treatment, protein and gene expression profiling were done on pretreatment biopsies. Patients with high-risk, operable breast cancer were treated with three cycles of paclitaxel followed by concurrent paclitaxel/radiation. Tumor tissue from pretreatment biopsies was obtained from 19 of the 38 patients enrolled in the study. Protein and gene expression profiling were done on serial sections of the biopsies from patients that achieved a pathologic complete response (pCR) and compared to those with residual disease, non-pCR (NR). Proteomic and validation immunohistochemical analyses revealed that -defensins (DEFA) were overexpressed in tumors from patients with a pCR. Gene expression analysis revealed that MAP2, a microtubule-associated protein, had significantly higher levels of expression in patients achieving a pCR. Elevation of MAP2 in breast cancer cell lines led to increased paclitaxel sensitivity. Furthermore, expression of genes that are associated with the basal-like, triple-negative phenotype were enriched in tumors from patients with a pCR. Analysis of a larger panel of tumors from patients receiving presurgical taxane-based treatment showed that DEFA and MAP2 expression as well as histologic features of inflammation were all statistically associated with response to therapy at the time of surgery. We show the utility of molecular profiling of pretreatment biopsies to discover markers of response. Our results suggest the potential use of immune signaling molecules such as DEFA as well as MAP2, a microtubule-associated protein, as tumor markers that associate with response to neoadjuvant taxanebased therapy.

Publication Title

Identification of markers of taxane sensitivity using proteomic and genomic analyses of breast tumors from patients receiving neoadjuvant paclitaxel and radiation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP166449
RNA-Seq analysis of skin from bleomycin induced scleroderma murine models treated with EHP-101 or Ajulemic acid
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Several lines of evidence have shown that the endocannabinoid system (ECS) may play a role in the pathophysiology of systemic sclerosis (SSc). Thereby, structurally different dual PPAR?/CB2 agonists such as VCE-004.8 and Ajulemic acid (AjA) have been shown to alleviate skin fibrosis and inflammation in experimental models of SSc. Since both compounds are currently being tested in humans, we were interested to identify similarities and differences in a murine model of SSc. One method available to assess this is the pharmacotranscriptomic signature of the individual compounds. To analyze the pharmacotranscriptomic signature, we used RNA-Seq to analyze the skin gene expression changes from bleomycin-induced fibrosis in mice treated orally with either AjA or EHP-101, a lipidic formulation of VCE-004.8. While both compounds prevented the upregulation of a common group of genes involved in the inflammatory and fibrotic components of the disease and the pharmacotranscriptomic signatures were similar for both compounds in some pathways, we found key differences between the compounds in several functional groups, including genes related the hypoxia, interferon-a and interferon-? response. Additionally, we found 28 specific genes with translation potential by comparing our results with a list of intrinsic human scleroderma genes. Inmunohistochemical analysis revealed that both EHP-101 and AjA prevented bleomycin-induced skin fibrosis, collagen accumulation, and TNC and VCAM expression. However, only EHP-101 normalized the reduced expression of vascular CD31, CD34 and Von Willebrand factor markers, which parallels skin fibrosis, while AjA did not affect these markers. Finally, clear differences were also found in the plasmatic biomarker analysis, in which we found that EHP-101, but not AjA, enhanced the expression of some factors related to angiogenesis and vasculogenesis. Altogether the results indicate that dual PPAR?/CB2 agonists qualify as a novel therapeutic approach for the treatment of SSc and other fibrotic diseases as well, and that EHP-101 has unique mechanisms of action related to the pathophysiology of SSc which could be beneficial in treatment of this complex disease with no current therapeutic options. Overall design: RNA-Seq profiles were generated for six- to eight-week-old female BALB/c mice in four conditions: Control, Bleomycin, Bleomycin + EHP-101 treatment and Bleomycin + Ajulemic acid treatment. Please note that the "raw_counts_newsamples.txt" includes raw counts obtained from featureCounts for the samples included in this entry and the "raw_counts_merged.txt" includes raw counts obtained from merging the counts of the samples from this entry with the counts of the samples from the GSE115503 entry.

Publication Title

Cannabinoid derivatives acting as dual PPARγ/CB2 agonists as therapeutic agents for systemic sclerosis.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE118345
Affymetrix Gene Expression array data for Tcl1 mouse model samples
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Tcl1 is known to be involved in survival, proliferation and differentiation of human lymphocytes and mouse embryonic stem cells. Loss of Tcl1 gene in the KO mouse model affects skin integrity inducing alopecia and ulcerations.

Publication Title

T Cell Leukemia/Lymphoma 1A is essential for mouse epidermal keratinocytes proliferation promoted by insulin-like growth factor 1.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE38063
Comparison of the long-term effects of calorie restriction without malnutrition on global gene expression profiles of rat and human skeletal muscle
  • organism-icon Homo sapiens, Rattus norvegicus
  • sample-icon 25 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip, Illumina Rat Ref-12 v1

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Calorie restriction in humans inhibits the PI3K/AKT pathway and induces a younger transcription profile.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE38012
Comparison of the long-term effects of calorie restriction without malnutrition on global gene expression profiles of rat and human skeletal muscle [Human]
  • organism-icon Homo sapiens
  • sample-icon 25 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

With the population of older and overweight individuals on the rise in the Western world, there is an ever greater need to slow the aging processes and reduce the burden of age-associated chronic disease that would significantly improve the quality of human life and reduce economic costs. Caloric restriction (CR), is the most robust and reproducible intervention known to delay aging and to improve healthspan and lifespan across species (1); however, whether this intervention can extend lifespan in humans is still unknown. Here we report that rats and humans exhibit similar responses to long-term CR at both the physiological and molecular levels. CR induced broad phenotypic similarities in both species such as reduced body weight, reduced fat mass and increased the ratio of muscle to fat. Likewise, CR evoked similar species-independent responses in the transcriptional profiles of skeletal muscle. This common signature consisted of three key pathways typically associated with improved health and survival: IGF-1/insulin signaling, mitochondrial biogenesis and inflammation. To our knowledge, these are the first results to demonstrate that long-term CR induces a similar transcriptional profile in two very divergent species, suggesting that such similarities may also translate to lifespan-extending effects in humans as is known to occur in rodents. These findings provide insight into the shared molecular mechanisms elicited by CR and highlight promising pathways for therapeutic targets to combat age-related diseases and promote longevity in humans.

Publication Title

Calorie restriction in humans inhibits the PI3K/AKT pathway and induces a younger transcription profile.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE66088
Identification of genes dysregulated with the disruption acRPB1
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

RPB1, the largest subunit of RNA polymerase II, contains a highly modifiable C-terminal domain (CTD) that consists of variations of a consensus heptad repeat sequence (Y1S2P3T4S5P6S7). The consensus CTD repeat motif and tandem organization represent the ancestral state of eukaryotic RPB1, but across eukaryotes CTDs show considerable diversity in repeat organization and sequence content. These differences may reflect lineage-specific CTD functions mediated by protein interactions. Mammalian CTDs contain eight non-consensus repeats with a lysine in the seventh position (K7). Posttranslational acetylation of these sites was recently shown to be required for proper polymerase pausing and regulation of two growth factor-regulated genes. To investigate the origins and function of RPB1 CTD acetylation (acRPB1), we computationally reconstructed the evolution of the CTD repeat sequence across eukaryotes and analyzed the evolution and function of genes dysregulated when acRPB1 is disrupted. Modeling the evolutionary dynamics of CTD repeat count and sequence content across diverse eukaryotes revealed an expansion of the CTD in the ancestors of Metazoa. The new CTD repeats introduced the potential for acRPB1 due to the appearance of distal repeats with lysine at position seven. This was followed by a further increase in the number of lysine-containing repeats in developmentally complex clades like Deuterostomia. Mouse genes enriched for acRPB1 occupancy at their promoters and genes with significant expression changes when acRPB1 is disrupted are enriched for several functions, such as growth factor response, gene regulation, cellular adhesion, and vascular development. Genes occupied and regulated by acRPB1 show significant enrichment for evolutionary origins in the early history of eukaryotes through early vertebrates. Our combined functional and evolutionary analyses show that RPB1 CTD acetylation was possible in the early history of animals, and that the K7 content of the CTD expanded in specific developmentally complex metazoan lineages. The functional analysis of genes regulated by acRPB1 highlight functions involved in the origin of and diversification of complex Metazoa. This suggests that acRPB1 may have played a role in the success of animals.

Publication Title

Evolution of lysine acetylation in the RNA polymerase II C-terminal domain.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE17602
Identification of regions and genes important in Szary syndrome pathogenesis using genomic and expression microarrays
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Identification of key regions and genes important in the pathogenesis of sezary syndrome by combining genomic and expression microarrays.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE87109
Conserved and species-specific molecular denominators in mammalian skeletal muscle aging
  • organism-icon Macaca mulatta, Mus musculus, Homo sapiens, Rattus norvegicus
  • sample-icon 46 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip, Illumina ratRef-12 v1.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Conserved and species-specific molecular denominators in mammalian skeletal muscle aging.

Sample Metadata Fields

Sex, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact