refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1223 results
Sort by

Filters

Technology

Platform

accession-icon GSE139085
Expresion and methylation analysis of adult somatic cell lines, five days after OSK, AOX15 and AO9 overxpression and derived iPSC using the different combinations
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Methods of reprogramming somatic cells to an induced pluripotent state (iPSC) have enabled the direct modeling of human disease and ultimately promise to revolutionize regenerative medicine. iPSCs offer an invaluable source of patient-specific pluripotent stem cells for disease modeling, drug screening, toxicology tests and importantly for regenerative medicine, and already have been employed to unmask novel insights into human diseases. While iPSCs can be consistently generated through overexpression of the four Yamanaka Factors OCT4, SOX2, KLF4 and c-MYC (OSKM), reprogrammed cells present worrisome differences with embryonic stem cells in transcriptional and epigenetic profiles, as well as developmental potential and difficulties in cell culturing. A thorough mechanistic understanding of the reprogramming process is critical to overcoming these barriers to the clinical use of iPSC. We have recently published a novel factor combination based on molecules specifically enriched in the metaphase II human oocyte. We have shown that just the overexpression of histone-remodeling chaperone ASF1A and OCT4 in hADFs previously exposed to the oocyte-specific paracrine growth factor GDF9 can reprogram hADFs into pluripotent cells (AO9-iPSCs). Our study contributes to the understanding of the molecular pathways governing somatic cell reprogramming. Here we want to go deeper in the reprogramming mechanisms by understanding the importance of somatic cell origin, and analyzing (and establishing comparison with) the transcriptional and epigenetic characteristics of AO9-iPSCs. As the intrinsic histone chaperone activity of ASF1A and our data indicate, these cells could be closer to the embryonic pluripotent state, with less epigenetic memory, better culture properties and differentiation potential.

Publication Title

Analysis of Menstrual Blood Stromal Cells Reveals SOX15 Triggers Oocyte-Based Human Cell Reprogramming.

Sample Metadata Fields

Sex, Specimen part, Subject

View Samples
accession-icon GSE34516
Brain transcriptomic profiling in idiopathic and LRRK2-associated Parkinson's disease
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

LRRK2 mutations are the most common genetic cause of Parkinsons disease (PD). We performed a whole-genome RNA profiling of locus coeruleus post-mortem tissue from idiopathic PD (IPD) and LRRK2-associated PD patients. The differentially expressed genes found in IPD and LRRK2-associated PD were involved in the gene ontology terms of synaptic transmission and neuron projection. In addition, in the IPD group we found associated genes belonging to the immune system. Pathway analysis of the differentially expressed genes in IPD was related with neuroactive-ligand receptor interaction and with immune system pathways. Specifically, the analysis highlighted differential expression of genes located in the chromosome 6p21.3 belonging to the class II HLA. Our findings support the hypothesis of a potential role of neuroinflammation and the involvement of the HLA genetic area in IPD pathogenesis. Future studies are necessary to shed light on the relation of immune system related pathways in the etiopathogenesis of PD.

Publication Title

Brain transcriptomic profiling in idiopathic and LRRK2-associated Parkinson's disease.

Sample Metadata Fields

Sex, Specimen part, Disease

View Samples
accession-icon GSE54633
Expression data from M0505 and STOSE murine ovarian surface epithelial cell lines
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Our lab established the M0505 cell line from the ovarian surface epithelium (OSE) of FVB/N mice in May 2005 in order to study OSE biology. This cell line spontaneously transformed into the spontaneously transformed OSE (STOSE) cell line in mid 2012.

Publication Title

A new spontaneously transformed syngeneic model of high-grade serous ovarian cancer with a tumor-initiating cell population.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP039628
Bmi1 defines long-term adult cardiac stem cells in heart homeostasis and repair
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

We have found the existence of a Bmi1+ population in the adult heart contributing to the organ low-rate turnover and repair with the generation of new cardiomyocytes. We show that the Bmi1+ population is a sub-population of the cardiac Sca-1+ progenitor cells. We have analyzed the gene profile by deep-sequencing (RNA-Seq) of Bmi1+ and Sca-1+Bmi1- cells in homeostatic heart condition. On the other hand, we have compared gene profile by deep-sequencing (RNA-Seq) of Bmi1+ cells in homeostatic condition versus Bmi1+ cells 5 days after myocardial infarction (MI). Analysis of RNA-Seq data revealed a differential expression signature between both subsets of cardiac stem/progenitors cells in homeostatic condition and also differences between Bmi1+ cells after AMI versus homeostatic condition. Overall design: Examination of gene profile of 2 different cardiac stem /progenitors subsets (Bmi1+ and Sca-1+Bmi1-) co-existing inthe adult heart under steady state. Examination of gene profile of Bmi1+ cardiac stem cells in homeostatic condition versus MI

Publication Title

Age-related oxidative stress confines damage-responsive Bmi1<sup>+</sup> cells to perivascular regions in the murine adult heart.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE11013
Gene expression rates in a mouse model for Potocki-Lupski Syndrome
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

To identify gene(s) that are modified in their relative expression levels in the Potocki-Lupski Syndrome mouse model and map to the rearranged region, i.e. possible candidate genes at the source of the PTLS-like phenotypes shown by the PTLS mouse, we comp

Publication Title

Abnormal social behaviors and altered gene expression rates in a mouse model for Potocki-Lupski syndrome.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE23290
Microarray expression analysis in idiopathic and LRRK2-associated Parkinson's disease
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

LRRK2 mutations are the most common genetic cause of Parkinsons disease (PD). We performed a whole-genome RNA profiling of putamen tissue from idiopathic PD (IPD), LRRK2-associated PD (G2019S mutation), neurologically healthy controls and one asymptomatic LRRK2 mutation carrier, by using the Genechip Human Exon 1.0-ST Array. The differentially expressed genes found in IPD revealed an alteration of biological pathways related to long term potentiation (LTP), GABA receptor signalling, and calcium signalling pathways, among others. These pathways are mainly related with cell signalling cascades and synaptic plasticity processes. They were also altered in the asymptomatic LRRK2 mutation carrier but not in the LRRK2-associated PD group. The expression changes seen in IPD might be attributed to an adaptive consequence of a dysfunction in the dopamine transmission. The lack of these altered molecular pathways in LRRK2-associated PD patients suggests that these cases could show a different molecular response to dopamine transmission impairment.

Publication Title

Microarray expression analysis in idiopathic and LRRK2-associated Parkinson's disease.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE42787
Lovastatin effect on breast tumors in HER2/neu transgenic mice
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The statins are a family of inhibitors of the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase enzyme, which converts acetyl-CoA into mevalonic acid. Since HMG-CoA reductase catalyzes the rate-limiting step in the mevalonate pathway of cholesterol biosynthesis, it was thought that the major clinical benefit of statins was to reduce cholesterol levels in the bloodstream; statins are thus in wide clinical use for the prevention and treatment of cardiovascular disease. Nonetheless, mevalonate is also the precursor of isoprenoid compounds, which are substrates for the post-translational modification of many proteins involved in cell signaling. The blockade of isoprenoid synthesis might explain the pleiotropic effects described for statins in extrahepatic tissues, including inhibition of pathogen infection and anti-inflammatory and immunomodulatory activities.

Publication Title

A lovastatin-elicited genetic program inhibits M2 macrophage polarization and enhances T cell infiltration into spontaneous mouse mammary tumors.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE81717
Delamination of neural crest cells requires transient and reversible Wnt inhibition mediated by Dact1/2
  • organism-icon Gallus gallus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Chicken Genome Array (chicken)

Description

Neural crest cells are a transient embryonic population, hence are neither present after bith and nor are they readily accesible for analysis. Therefore, little is known about the genetic networks that regulate NC especification, delamitation and migration from the dorsal neural tube to their final destination along the embryo.

Publication Title

Delamination of neural crest cells requires transient and reversible Wnt inhibition mediated by Dact1/2.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP119989
Foxp2 Overexpression in BACHD mice
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Alterations to corticostriatal glutamatergic function are early pathophysiological changes associated with Huntington?s disease (HD). The factors that regulate the maintenance of corticostriatal glutamatergic synapses post-developmentally are not well understood. Recently, the striatum-enriched transcription factor Foxp2 was implicated in the development of these synapses. Here we show that, in mice, overexpression of Foxp2 in the adult striatum of two models of HD leads to rescue of HD-associated behaviors, while knockdown of Foxp2 in wild-type mice leads to development of HD-associated behaviors. We note that Foxp2 encodes the longest polyglutamine repeat protein in the human reference genome, and we show that it can be sequestered into aggregates with polyglutamine-expanded mutant Huntingtin protein (mHTT). Foxp2 overexpression in HD model mice leads to altered expression of several genes associated with synaptic function, genes which present new targets for normalization of corticostriatal dysfunction in HD. Overall design: 4 mice per group of each: Con+Con, Con+Foxp2, BACHD+Con, BACHD+Foxp2 Foxp2 or Control virus was injected into BACHD and Control mice, mRNA was isolated and sequenced

Publication Title

Control of Huntington's Disease-Associated Phenotypes by the Striatum-Enriched Transcription Factor Foxp2.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP051485
Pervasive transcription read-through promotes aberrant expression of oncogenes and RNA chimeras in renal carcinoma
  • organism-icon Homo sapiens
  • sample-icon 21 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Aberrant expression of cancer genes and non-canonical RNA species is a hallmark of cancer. However, the mechanisms driving such atypical gene expression programs are incompletely understood. Here, our transcriptional profiling of a cohort of 50 primary clear cell renal cell carcinoma (ccRCC) samples from The Cancer Genome Atlas (TCGA) reveals that transcription read-through beyond the termination site is a source of transcriptome diversity in cancer cells. Amongst the genes most frequently mutated in ccRCC, we identified SETD2 inactivation as a potent enhancer of transcription read-through. We further show that invasion of neighbouring genes and generation of RNA chimeras are functional outcomes of transcription read-through. We identified the BCL2 oncogene as one of such invaded genes and detected a novel chimera, the CTSC-RAB38, in 20% of ccRCC samples. Collectively, our data highlight a novel link between transcription read-through and aberrant expression of oncogenes and chimeric transcripts that is prevalent in cancer. Overall design: RNA-seq of SETD2 mutant and wild-type ccRCC cell lines.

Publication Title

Pervasive transcription read-through promotes aberrant expression of oncogenes and RNA chimeras in renal carcinoma.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact