refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 580 results
Sort by

Filters

Technology

Platform

accession-icon SRP076677
Pericyte-like cells generated from human pluripotent stem cells support hematopoietic stem and progenitors ex vivo
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Various mesenchymal cell types have been identified as critical components of the hematopoietic stem/progenitor cell (HSPC) niche. Although several groups have described the generation of mesenchyme from human pluripotent stem cells (hPSC), the capacity of such cells to support hematopoiesis has not been reported. Here we have demonstrated that distinct mesenchymal subpopulations co-emerge from mesoderm during hPSC differentiation. Despite co-expression of common mesenchymal markers (CD73, CD105, CD90, PDGFRß), a subset of cells defined as CD146++CD140alow supported functional HSPC ex vivo while CD146­-CD140a+ cells drove differentiation. The CD146++ subset expressed genes associated with the HSPC niche and high levels of the Wnt inhibitors. HSPC support was contact-dependent and was mediated in part through JAG1 expression. Molecular profiling revealed remarkable transcriptional similarity between hPSC-derived CD146++ and primary human CD146++ perivascular cells. The derivation of diverse pools of mesenchymal populations from hPSC opens potential avenues to model their developmental and functional differences and to improve cell-based therapeutics from hPSC. Overall design: Our goal was to analyze and compare transcriptome of human pluripoten stem cell-derived mesenchyme (CD146++ and CD146-) with primary human lipoaspirate tissue-derived pericyte (CD146+) and CD146- mesenchymal populations.

Publication Title

Transcriptionally and Functionally Distinct Mesenchymal Subpopulations Are Generated from Human Pluripotent Stem Cells.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP070059
Genetic Tagging During Human Mesoderm Differentiation Reveals Tripotent Lateral Plate Mesodermal Progenitors
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Although clonal studies of lineage potential have been extensively applied to organ specific stem and progenitor cells, much less is known about the clonal origins of lineages formed from the germ layers in early embryogenesis. We applied lentiviral tagging followed by vector integration site analysis (VISA) with high-throughput sequencing to investigate the ontogeny of the hematopoietic, endothelial and mesenchymal lineages as they emerge from human embryonic mesoderm. In contrast to studies that have used VISA to track differentiation of self-renewing stem cell clones that amplify significantly over time, we focused on a population of progenitor clones with limited self-renewal capability. Our analyses uncovered the critical influence of sampling on the interpretation of lentiviral tag sharing, particularly among complex populations with minimal clonal duplication. By applying a quantitative framework to estimate the degree of undersampling we revealed the existence of tripotent mesodermal progenitors derived from pluripotent stem cells, and the subsequent bifurcation of their differentiation into exclusively bipotent endothelial/hematopoietic or endothelial/mesenchymal progenitors. Overall design: Our goal was to analyze transcriptome changes of mesoderm commitment during human embyronic stem cells differentiation. RNA were extracted and sequenced from two populations, human embryonic stem cells (H1 line) and the human early mesodermal progenitors (hEMP) differentiated from H1.

Publication Title

Transcriptionally and Functionally Distinct Mesenchymal Subpopulations Are Generated from Human Pluripotent Stem Cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP079175
Effect of BCL11B overexpression on transcriptome of T-cell acute lymphoblastic leukemia (T-ALL) cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

To investigate the effects of BCL11B on T-cell differentiation, we performed gain of function studies in cells with a T-lineage differentiation arrest, namely T-ALL cells. Gene expression profiling by RNA-Seq demonstrated that BCL11B overexpression induced transcriptional changes consistent with T-cell differentiation as early as 72 hours after transduction, indicating a rapid regulatory effect of BCL11B on the T-lineage transcriptional program and supporting an important role for BCL11B in human T-cell differentiation. Overall design: T-ALL cells were transduced with a BCL11B-GFP expression vector (overexpressing cells) or an empty GFP vector (control cells). GFP+ cells were isolated by fluorescence activation cell sorting (FACS) at 72 hours post transduction and analyzed by RNA-Seq to determine the effect of BCL11B on the transcriptome of T-ALL cells.

Publication Title

The T-ALL related gene BCL11B regulates the initial stages of human T-cell differentiation.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE65647
LncRNA Expression Discriminates Karyotype and Predicts Survival in B-lymphoblastic Leukemia
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

LncRNA Expression Discriminates Karyotype and Predicts Survival in B-Lymphoblastic Leukemia.

Sample Metadata Fields

Specimen part, Disease, Treatment

View Samples
accession-icon SRP058719
Long non-coding RNA profiling of human lymphoid progenitors reveals transcriptional divergence of B cell and T cell lineages
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

To elucidate the transcriptional ‘landscape’ that regulates human lymphoid commitment during postnatal life, we used RNA sequencing to assemble the long non-coding transcriptome across human bone marrow and thymic progenitor cells spanning the earliest stages of B lymphoid and T lymphoid specification. Over 3,000 genes encoding previously unknown long non-coding RNA (lncRNAs) were revealed through the analysis of these rare populations. Lymphoid commitment was characterized by lncRNA expression patterns that were highly stage specific and were more lineage specific than those of protein-coding genes. Protein-coding genes co-expressed with neighboring lncRNA genes showed enrichment for ontologies related to lymphoid differentiation. The exquisite cell-type specificity of global lncRNA expression patterns independently revealed new developmental relationships among the earliest progenitor cells in the human bone marrow and thymus. Overall design: We performed RNA-Seq of 10 distinct cell types isolated by fluorescence activated cell sorting (FACS). From BM, we isolated CD34+CD38neglinneg cells, a population highly enriched for HSC, as well as three lymphoid progenitor populations; LMPP (CD34+CD45RA+CD38+CD10neg CD62Lhilinneg), CLP (CD34+CD38+CD10+CD45RA+linneg ) and fully B cell committed progenitors (BCP, CD34+CD38+CD19+). From thymus we isolated three CD34+ subsets; Thy1 (CD34+CD7neg CD1aneg CD4negCD8neg), Thy2 (CD34+CD7+CD1aneg CD4negCD8neg), and Thy 3 (CD34+CD7+CD1a+CD4negCD8neg), as well as fully T cell committed populations CD4+CD8+ (Thy 4), CD3+CD4+CD8neg (Thy5) and CD3+CD4neg CD8+ (Thy6).

Publication Title

Long non-coding RNA profiling of human lymphoid progenitor cells reveals transcriptional divergence of B cell and T cell lineages.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE65646
LncRNA Expression Discriminates Karyotype and Predicts Survival in B-lymphoblastic Leukemia (Affymetrix)
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Long non-coding RNAs (lncRNAs) have been found to play a role in gene regulation with dysregulated expression in various cancers. The precise role that lncRNA expression plays in the pathogenesis of B-acute lymphoblastic leukemia (B-ALL) is unknown. Therefore, unbiased microarray profiling was performed on human B-ALL specimens and it was determined that lncRNA expression correlates with cytogenetic abnormalities, which was confirmed by RT-qPCR in a large set of B-ALL cases. Importantly, high expression of BALR-2 correlated with poor overall survival and diminished response to prednisone treatment. In line with a function for this lncRNA in regulating cell survival, BALR-2 knockdown led to reduced proliferation, increased apoptosis, and increased sensitivity to prednisolone treatment. Conversely, overexpression of BALR-2 led to increased cell growth and resistance to prednisone treatment. Interestingly, BALR-2 expression was repressed by prednisolone treatment and its knockdown led to upregulation of the glucocorticoid response pathway in both human and mouse B-cells. Together, these findings indicate that BALR-2 plays a functional role in the pathogenesis and/or clinical responsiveness of B-ALL and that altering the levels of particular lncRNAs may provide a future direction for therapeutic development.

Publication Title

LncRNA Expression Discriminates Karyotype and Predicts Survival in B-Lymphoblastic Leukemia.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon SRP056375
The Expansion of Thymopoiesis in Neonatal Mice is Dependent on Expression of High mobility group A 2 protein (Hmga2)
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The most immature progenitors in the murine thymus are early T lineage progenitors (ETP). These cells are the precursors of more mature thymocytes that ultimately leave the thymus and colonize peripheral lymphoid tissues. As part of our efforts to define age-related changes in ETP, we harvested them from mice of different ages and performed whole transcriptome profiling. This analysis revealed major differences in patterns of gene expression between young and old ETP, and we were particularly struck by the significantly reduced expression of the gene encoding high mobility group A 2 protein (Hmga2). Overall design: The experiment compares gene expression in young adult (4-6 week old) and old (72 week old) mouse Early T Lineage Progenitors (ETP)

Publication Title

The expansion of thymopoiesis in neonatal mice is dependent on expression of high mobility group a 2 protein (Hmga2).

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE64302
Expression Data from PtenF341V and Null Mouse Embryonic Fibroblasts
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

PTEN imparts tumor suppression in mice by cell autonomous and non-autonomous mechanisms. Whether these two tumor suppressor mechanisms are mediated through similar or distinct signaling pathways is not known. Here we generated and analyzed knockin mice that express a series of human cancer-derived mutant alleles of PTEN that differentially alter the Akt axis in either stromal or tumor cell compartments of mammary glands. We find that cell non-autonomous tumor suppression by Pten in stromal fibroblasts strictly requires activation of P-Akt signaling, whereas cell autonomous tumor suppression in epithelial tumor cells is independent of overt canonical pathway activation. These findings expose distinct Akt-dependent and independent tumor suppressor functions of PTEN in stromal fibroblasts and tumor cells, respectively, that can be used to guide clinical care of breast cancer patients

Publication Title

Noncatalytic PTEN missense mutation predisposes to organ-selective cancer development in vivo.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE64303
Expression Data from Pten mutant epithelial cells
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

PTEN imparts tumor suppression in mice by cell autonomous and non-autonomous mechanisms. Whether these two tumor suppressor roles are mediated through similar or distinct signaling pathways is not known. Here we generated and analyzed knockin mice that express a series of human cancer-derived mutant alleles of PTEN in either stromal or tumor cell compartments of mammary glands. We find that cell non-autonomous tumor suppression by Pten in stromal fibroblasts strictly requires activation of P-Akt signaling, whereas cell autonomous tumor suppression in epithelial tumor cells is independent of overt canonical pathway activation

Publication Title

Noncatalytic PTEN missense mutation predisposes to organ-selective cancer development in vivo.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE26267
Comparison of hepatic gene expression between short-term calorie restricted wild-type and Dgat1 deficient middle-aged female mice
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Leanness is associated with increased lifespan and is linked to favorable metabolic conditions promoting life extension.

Publication Title

Deficiency of the lipid synthesis enzyme, DGAT1, extends longevity in mice.

Sample Metadata Fields

Sex, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact