refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 580 results
Sort by

Filters

Technology

Platform

accession-icon GSE33070
Adipose tissue gene expression associated with weight gain in kidney transplant recipients
  • organism-icon Homo sapiens
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The aim of this study was to investigate the association of gene expression profiles in subcutaneous adipose tissue with percent of total body weight change in 26 kidney transplant recipients.

Publication Title

Expression levels of obesity-related genes are associated with weight change in kidney transplant recipients.

Sample Metadata Fields

Sex, Race

View Samples
accession-icon GSE28795
Expression data from E. coli cells overexpressing either GreA or GreB in ppGpp0 cells in the dksA+ or dksA- background
  • organism-icon Escherichia coli
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix E. coli Genome 2.0 Array (ecoli2)

Description

Strains devoid of ppGpp (relA spoT; called ppGpp0), and ppGpp0 dksA- exhibit several amino acid requirements for growth on minimal media. We found that overexpression of DksA can complement some of those requirements. Since DksA is a factor that binds to the RNA polymerase secondary channel, we wondered if other secondary channel proteins might also exert a similar role with respect to growth on minimal media. In our study we found that GreA and partially GreB can in fact complement these requirements under certain conditions. Here, we wished to investigate a broader effect of GreA and GreB on ppGpp0 and ppGpp0 dksA- strains. Since the parent strains are unable to grow in minimal media, we had to supplement the M9 glucose medium with a set of amino acids (DFHILQSTV). We found that both, GreA and GreB can affect a much larger set of genes in the absence of dksA, than in its presence. Also, GreA seems to affect more genes than GreB, under both conditions.

Publication Title

Effects on growth by changes of the balance between GreA, GreB, and DksA suggest mutual competition and functional redundancy in Escherichia coli.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE15406
Expression data from E. coli cells overexpressing GraL for short and long periods of time
  • organism-icon Escherichia coli
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix E. coli Genome 2.0 Array (ecoli2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Imprecise transcription termination within Escherichia coli greA leader gives rise to an array of short transcripts, GraL.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE15404
Expression data from E. coli cells overexpressing GraL for short periods of time
  • organism-icon Escherichia coli
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix E. coli Genome 2.0 Array (ecoli2)

Description

While studying greA expression, we noted presence of an intrinsic terminator in the leader region of greA mRNA transcript. We found this terminator to be quite efficient both in vivo and in vitro. This region seems to be conserved among many enteric bacteria. Judging from fitness experiments, the resulting short RNAs (50-59nt long) exert biological effects. This lead us to propose that greA leader region encodes a novel small non-coding RNA that we collectively call GraL.

Publication Title

Imprecise transcription termination within Escherichia coli greA leader gives rise to an array of short transcripts, GraL.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE15405
Expression data from E. coli cells overexpressing GraL for long periods of time
  • organism-icon Escherichia coli
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix E. coli Genome 2.0 Array (ecoli2)

Description

While studying greA expression, we noted presence of an intrinsic terminator in the leader region of greA mRNA transcript. We found this terminator to be quite efficient both in vivo and in vitro. This region seems to be conserved among many enteric bacteria. Judging from fitness experiments, the resulting short RNAs (50-59nt long) exert biological effects. This lead us to propose that greA leader region encodes a novel small non-coding RNA that we collectively call GraL.

Publication Title

Imprecise transcription termination within Escherichia coli greA leader gives rise to an array of short transcripts, GraL.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP048820
Enhancer Sequence Variants and Transcription Factor Deregulation Synergize to Construct Pathogenic Regulatory Circuits in B Cell Lymphoma (RNA-Seq)
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Most B cell lymphomas arise in the germinal center (GC), where humoral immune responses evolve from potentially oncogenic cycles of mutation, proliferation, and clonal selection. Although lymphoma gene expression diverges significantly from GC-B cells, underlying mechanisms that alter the activities of corresponding regulatory elements (REs) remain elusive. Here we define the complete pathogenic circuitry of human follicular lymphoma (FL), which activates or decommissions transcriptional circuits from normal GC-B cells and commandeers enhancers from other lineages. Moreover, independent sets of transcription factors, whose expression is deregulated in FL, target commandeered versus decommissioned REs. Our approach reveals two distinct subtypes of low-grade FL, whose pathogenic circuitries resemble GC-B or activated B cells. Remarkably, FL-altered enhancers also are enriched for sequence variants, including somatic mutations, which disrupt transcription factor binding and expression of circuit-linked genes. Thus, the pathogenic regulatory circuitry of FL reveals distinct genetic and epigenetic etiologies for GC-B transformation. Overall design: Expression profiles of follicular lymphoma, centrocyte and peripheral blood B cells were generated by deep sequencing, using Illumina Hi-Seq 2000.

Publication Title

NKG2D-NKG2D Ligand Interaction Inhibits the Outgrowth of Naturally Arising Low-Grade B Cell Lymphoma In Vivo.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE62246
Enhancer Sequence Variants and Transcription Factor Deregulation Synergize to Construct Pathogenic Regulatory Circuits in B Cell Lymphoma
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st), Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Enhancer sequence variants and transcription-factor deregulation synergize to construct pathogenic regulatory circuits in B-cell lymphoma.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE61912
Enhancer Sequence Variants and Transcription Factor Deregulation Synergize to Construct Pathogenic Regulatory Circuits in B Cell Lymphoma (array)
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st), Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

Most B cell lymphomas arise in the germinal center (GC), where humoral immune responses evolve from potentially oncogenic cycles of mutation, proliferation, and clonal selection. Although lymphoma gene expression diverges significantly from GC-B cells, underlying mechanisms that alter the activities of corresponding regulatory elements (REs) remain elusive. Here we define the complete pathogenic circuitry of human follicular lymphoma (FL), which activates or decommissions transcriptional circuits from normal GC-B cells and commandeers enhancers from other lineages. Moreover, independent sets of transcription factors, whose expression is deregulated in FL, target commandeered versus decommissioned REs. Our approach reveals two distinct subtypes of low-grade FL, whose pathogenic circuitries resemble GC-B or activated B cells. Remarkably, FL-altered enhancers also are enriched for sequence variants, including somatic mutations, which disrupt transcription factor binding and expression of circuit-linked genes. Thus, the pathogenic regulatory circuitry of FL reveals distinct genetic and epigenetic etiologies for GC-B transformation.

Publication Title

Enhancer sequence variants and transcription-factor deregulation synergize to construct pathogenic regulatory circuits in B-cell lymphoma.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE5156
Impact of intestinal colonization on Paneth cell gene expression
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This study delineated how small intestinal resident microflora impact gene expression in Paneth cells.

Publication Title

Symbiotic bacteria direct expression of an intestinal bactericidal lectin.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE136172
Harmine treatment of PMA-treated J-Lat 5A8 cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

Transcriptome analysis was performed to determine what gene expression changes occur in response to treatment of the plant-derived compound harmine and to determine its effect on protein kinase C agonist reactivation of latent HIV.

Publication Title

Harmine enhances the activity of the HIV-1 latency-reversing agents ingenol A and SAHA.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact