refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 580 results
Sort by

Filters

Technology

Platform

accession-icon GSE34885
Defective NK cells in AML patients at diagnosis are associated with blast transcriptional signatures of immune evasion
  • organism-icon Homo sapiens
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Acute myeloid leukemia (AML) is a heterogeneous group of malignancies which may be sensitive to the natural killer (NK) cell anti-tumor response. However, NK cells are frequently defective in AML. Here, we found in an exploratory cohort (n = 46) that NK-cell status at diagnosis of AML separated patients in two groups with a different clinical outcome. Patients with a deficient NK-cell profile, including reduced expression of some activating NK receptors (e.g. DNAM-1, NKp46 and NKG2D) and decreased IFN-g production, had a significantly higher risk of relapse (P = 0.03) independently of cytogenetic classification in multivariate analysis. Patients with defective NK cells showed a profound gene expression decrease in AML blasts for cytokine and chemokine signaling (e.g. IL15, IFNGR1, IFNGR2, CXCR4), antigen processing (e.g. HLA-DRA, HLA-DRB1, CD74) and adhesion molecule pathways (e.g. PVR, ICAM1). A set of 388 leukemic classifier genes defined in the exploratory cohort was independently validated in a multicentric cohort of 194 AML patients. In total, these data evidenced the interplay between NK-cells and AML blasts at diagnosis allowing an immune-based stratification of AML patients independently of clinical classifications.

Publication Title

Defective NK Cells in Acute Myeloid Leukemia Patients at Diagnosis Are Associated with Blast Transcriptional Signatures of Immune Evasion.

Sample Metadata Fields

Disease, Subject

View Samples
accession-icon GSE50928
Defective NK cells in AML patients at diagnosis are associated with blast transcriptional signatures of immune evasion
  • organism-icon Homo sapiens
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Acute myeloid leukemia (AML) is a heterogeneous group of malignancies which may be sensitive to the natural killer (NK) cell anti-tumor response. However, NK cells are frequently defective in AML. Here, we found in an exploratory cohort (n = 46) that NK-cell status at diagnosis of AML separated patients in two groups with a different clinical outcome. Patients with a deficient NK-cell profile, including reduced expression of some activating NK receptors (e.g. DNAM-1, NKp46 and NKG2D) and decreased IFN-g production, had a significantly higher risk of relapse (P = 0.03) independently of cytogenetic classification in multivariate analysis. Patients with defective NK cells showed a profound gene expression decrease in AML blasts for cytokine and chemokine signaling (e.g. IL15, IFNGR1, IFNGR2, CXCR4), antigen processing (e.g. HLA-DRA, HLA-DRB1, CD74) and adhesion molecule pathways (e.g. PVR, ICAM1). A set of 388 leukemic classifier genes defined in the exploratory cohort was independently validated in a multicentric cohort of 194 AML patients. In total, these data evidenced the interplay between NK-cells and AML blasts at diagnosis allowing an immune-based stratification of AML patients independently of clinical classifications.

Publication Title

Defective NK Cells in Acute Myeloid Leukemia Patients at Diagnosis Are Associated with Blast Transcriptional Signatures of Immune Evasion.

Sample Metadata Fields

Age, Disease, Disease stage

View Samples
accession-icon GSE44053
Identification of heat stress-targets of translational control by large scale analysis of Arabidopsis trancriptome and translatome.
  • organism-icon Arabidopsis thaliana
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Heat stress is one of the most prominent and deleterious environmental threads affecting plant growth and development. Upon high temperatures, plants launch specialized gene expression programs that promote stress protection and survival. These programs involve global and specific changes at the transcriptional and translational levels. However the coordination of these processes and their specific role in the establishment of the heat stress response is not fully elucidated.

Publication Title

Analysis of genome-wide changes in the translatome of Arabidopsis seedlings subjected to heat stress.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE56897
The transcription factor GATA6 allows self-renewal of colon adenoma stem cells by repressing BMP gene expression
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The transcription factor GATA6 enables self-renewal of colon adenoma stem cells by repressing BMP gene expression.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE56895
Identification of GATA6 target genes in LS174T colorectal cancer cells using gene expression arrays
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Aberrant activation of WNT signaling and loss of BMP signals represent the two main alterations leading to the initiation of colorectal cancer (CRC). Here we screen for genes required for maintaining the tumor stem cell phenotype and identify the zinc-finger transcription factor GATA6 as key regulator of the WNT and BMP pathways in CRC. GATA6 directly drives the expression of LGR5 in adenoma stem cells while it restricts BMP signaling to differentiated tumor cells. Genetic deletion of Gata6 in mouse colon adenomas increases the levels of BMP factors, which signal to block self-renewal of tumor stem cells. In human tumors, GATA6 competes with beta-catenin/TCF4 for binding to a distal regulatory region of the BMP4 locus that has been previously linked to increased susceptibility to develop CRC. Hence, GATA6 creates a permissive environment for tumor stem cell expansion by controlling the major signaling pathways that influence CRC initiation.

Publication Title

The transcription factor GATA6 enables self-renewal of colon adenoma stem cells by repressing BMP gene expression.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE56896
Identification of beta-cetenin/TCF4 target genes in LS174T colorectal cancer cells using gene expression arrays
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Aberrant activation of WNT signaling and loss of BMP signals represent the two main alterations leading to the initiation of colorectal cancer (CRC). Here we screen for genes required for maintaining the tumor stem cell phenotype and identify the zinc-finger transcription factor GATA6 as key regulator of the WNT and BMP pathways in CRC. GATA6 directly drives the expression of LGR5 in adenoma stem cells while it restricts BMP signaling to differentiated tumor cells. Genetic deletion of Gata6 in mouse colon adenomas increases the levels of BMP factors, which signal to block self-renewal of tumor stem cells. In human tumors, GATA6 competes with beta-catenin/TCF4 for binding to a distal regulatory region of the BMP4 locus that has been previously linked to increased susceptibility to develop CRC. Hence, GATA6 creates a permissive environment for tumor stem cell expansion by controlling the major signaling pathways that influence CRC initiation.

Publication Title

The transcription factor GATA6 enables self-renewal of colon adenoma stem cells by repressing BMP gene expression.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP074765
Translational contributions to tissue-specificity in rhythmic and constitutive gene expression
  • organism-icon Mus musculus
  • sample-icon 82 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

BACKGROUND: The daily gene expression oscillations that underlie mammalian circadian rhythms show striking differences between tissues and involve post-transcriptional regulation. Both aspects remain poorly understood. We have used ribosome profiling to explore the contribution of translation efficiency to temporal gene expression in kidney, and contrasted our findings with liver data available from the same mice. RESULTS: Rhythmic translation of constantly abundant mRNAs affects largely nonoverlapping transcript sets with distinct phase clustering in the two organs. Moreover, tissue differences in translation efficiency modulate the timing and amount of protein biosynthesis from rhythmic mRNAs, consistent with organ-specificity in clock output gene repertoires and rhythmicity parameters. Our comprehensive datasets provided insights into translational control beyond temporal regulation. Between tissues, many transcripts show differences in translation efficiency, which are, however, of markedly smaller scale than mRNA abundance differences. Tissue-specific changes in translation efficiency are associated with specific transcript features and, intriguingly, globally counteracted and compensated transcript abundance variations, leading to higher similarity at the level of protein biosynthesis between both tissues. CONCLUSIONS: We show that tissue-specificity in rhythmic gene expression extends to the translatome and contributes to define the identities, the phases and the expression levels of rhythmic protein biosynthesis. Moreover, translational compensation of transcript abundance divergence leads to overall higher similarity at the level of protein production across organs. The unique resources provided through our study will serve to address fundamental questions of post-transcriptional control and differential gene expression in vivo. Overall design: A total of 48 mice were entrained under 12hours light:dark conditions for 2 weeks and also collected under 12hours light:dark. Mice were sacrificed every two hours during the 24 hours daily cycle. Two replicates per time point, each replicate is a pool of livers or kidneys from 2 animals.

Publication Title

Translational contributions to tissue specificity in rhythmic and constitutive gene expression.

Sample Metadata Fields

Sex, Cell line, Subject, Time

View Samples
accession-icon GSE18146
Conjugated and non-conjugated androgen differentially modulate gene expression in breast cancer cell lines.
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The role of androgen in breast cancer development is not fully understood although androgen receptors (AR) have been identified in breast cancer clinical samples and cell lines. However the whole spectra of androgen actions cannot be accounted to the classic AR mode of action and the possible existence of a cell surface AR has been suggested. Indeed androgens like all steroids have been reported to trigger membrane initiated signaling activity and exert specific actions. Androgens acting on the membrane can rapidly activate kinase signaling pathways and ultimately could affect gene expression. However, the molecular nature of membrane androgen binding sites represents another major persisting question. In the present study, we investigated early transcriptional effects of testosterone and the impermeable testosterone-BSA conjugate, in two breast cancer cell lines, in an attempt to decipher specific genes modified in each case, providing evidences about specific membrane initiating actions. Our data indicate that the two agents tested affect the expression of several genes. A group of genes were commonly affected while others were uniquely modified by each agent. In MDA-MB-231 cells, that are AR negative, the majority of genes affected by testosterone were also affected by testosterone-BSA indicating a membrane action. Subsequent analysis revealed that the two agents trigger different molecular pathways and cellular/molecular functions, suggestive of a molecular heterogeneity of membrane and intracellular AR. In addition, the phenotypic interactions of membrane-acting androgen with growth factor were verified at the transcriptomic level. Finally an interesting interplay between membrane-acting androgen with inflammation-related molecules, with potential clinical implications was revealed.

Publication Title

Conjugated and non-conjugated androgens differentially modulate specific early gene transcription in breast cancer in a cell-specific manner.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE42591
Expression data from fresh and cultured islets at different glucose concentrations
  • organism-icon Mus musculus
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

-cell identity is determined by tightly regulated transcriptional networks that are modulated by extracellular cues, thereby ensuring -cell adaptation to the organisms insulin demands. We have observed in pancreatic islets that stimulatory glucose concentrations induced a gene profile that was similar to that of freshly isolated islets, indicating that glucose-elicited cues are involved in maintaining -cell identity. Low glucose induces the expression of ubiquitous genes involved in stress responses, nutrient sensing, and organelle biogenesis. By contrast, stimulatory glucose concentrations activate genes with a more restricted expression pattern (- and neuronal- cell identity). Consistently, glucose-induced genes are globally reduced in islets deficient with Hnf1a (MODY3), characterized by a deficient glucose metabolism. Of interest, a cell cycle gene module was the most enriched among the variable genes between intermediate and stimulatory glucose concentrations. Glucose regulation of the islet transcriptome was unexpectedly broadly maintained in islets from aged mice. However, the cell cycle gene module is selectively lost in old islets and the glucose activation of this module is not recovered even in the absence of the cell cycle inhibitor p16.

Publication Title

Glucose regulation of a cell cycle gene module is selectively lost in mouse pancreatic islets during ageing.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE51467
Expresion profile of TGR-1 (Myc+/+) and HO15.19 (Myc-/-) infected with a retrovirus expressing Hhex or GFP (controls)
  • organism-icon Rattus norvegicus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 2.0 ST Array (ragene20st)

Description

The aim of this experiment is to determine Hhex targets in the presence and absence of Myc.

Publication Title

Growth-promoting and tumourigenic activity of c-Myc is suppressed by Hhex.

Sample Metadata Fields

Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact