refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 2 of 2 results
Sort by

Filters

Technology

Platform

accession-icon SRP059701
Androgen receptor programming in human tissue implicates HOXB13 in prostate pathogenesis [RNA-Seq]
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconNextSeq500

Description

The androgen receptor (AR), a nuclear transcription factor (TF), is consistently reprogrammed during prostate tumorigenesis Overall design: Gene expresion profiles when LHSAR with overexpressed FOXA1, HOXB13 or FOXA1 and HOXB13 together compared with LacZ control

Publication Title

The androgen receptor cistrome is extensively reprogrammed in human prostate tumorigenesis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP164926
Trisomy of a 'Down syndrome critical region' globally amplifies transcription via HMGN1 overexpression [SLAM-Seq]
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Down syndrome (DS, trisomy 21) is associated with developmental abnormalities and increased leukemia risk. To reconcile chromatin alterations with transcriptome changes in cells with trisomy 21, we performed paired exogenous spike-in normalized RNA and chromatin immunoprecipitation sequencing in DS models. Absolute per cell normalization unmasked global amplification of gene expression associated with trisomy 21. Overexpression of the nucleosome binding protein HMGN1 (encoded on chr21q22) recapitulated the transcriptional changes seen with triplication of a “Down syndrome critical region” on distal chromosome 21. Absolute exogenous normalized ChIP-seq (ChIP-Rx) also revealed a global increase in histone 3 lysine 27 acetylation caused by HMGN1. Genes most amplified downstream of HMGN1 were enriched for tumor- and developmental stage-specific programs of B-cell acute lymphoblastic leukemia dependent on the cellular context. These data offer a mechanistic explanation for DS transcriptional patterns, and suggest that further study of HMGN1 and RNA amplification in diverse DS phenotypes is warranted. Overall design: SLAM-seq in NALM6 human pre-B cells with engineered HMGN1 overexpression

Publication Title

Trisomy of a Down Syndrome Critical Region Globally Amplifies Transcription via HMGN1 Overexpression.

Sample Metadata Fields

Cell line, Treatment, Subject

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact