refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1919 results
Sort by

Filters

Technology

Platform

accession-icon SRP063091
Acute loss of TET function results in aggressive myeloid cancer in mice [RNA-Seq]
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

TET-family dioxygenases oxidize 5-methylcytosine (5mC) in DNA, and exert tumor suppressor activity in many types of cancers. Even in the absence of TET coding region mutations, TET loss-of-function is strongly associated with cancer. We show that acute elimination of TET function induces the rapid development of an aggressive, fully-penetrant and cell-autonomous myeloid leukemia in mice, pointing to a causative role for TET-loss-of-function in this myeloid malignancy. Phenotypic and transcriptional profiling showed aberrant differentiation of hematopoietic stem/ progenitor cells, impaired erythroid and lymphoid differentiation and strong skewing to the myeloid lineage, with only a mild relation to changes in DNA modification. We also observed progressive accumulation of DNA damage and strong impairment of DNA break repair, suggesting a key role for TET proteins in maintaining genomic integrity. Overall design: Jungeun, An

Publication Title

Acute loss of TET function results in aggressive myeloid cancer in mice.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP065661
Innate-like functions of natural killer T cell subsets result from highly divergent gene programs [single_cell_RNA-seq]
  • organism-icon Mus musculus
  • sample-icon 405 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Natural killer T (NKT) cells have immune stimulatory or inhibitory effects on the immune response that are context-dependent. This may be attributed in part to the existence of functional NKT cell subsets; however, these functional subsets have only been characterized on the basis of differential expression of a few transcription factors and cell surface molecules. Here we have analyzed purified populations of thymic NKT cell subsets at both the transcriptomic and epigenomic levels, and by single-cell RNA sequencing. Our data indicate that despite their similar antigen specificity, the functional NKT cell subsets are highly divergent populations characterized by many gene expression and epigenetic differences. Therefore the thymus imprints innate-like NKT cells with novel combinations of properties, including differences in proliferative capacity, homing, and effector functions that were not previously anticipated. Overall design: Analysis of single cell transcriptomic heterogeneity in mouse Va14 iNKT thymocyte subsets (NKT1, NKT2, NKT17 and NKT0). Samples were generated from individual experiment using a pool of thymocytes prepared from five five-week old C57BL/6J females. NKT cells subtypes were isolated from thymuses and directly sorted by flow cytometry into lysis buffer (96 well plate single cell sort). The preparation of samples occurred in 2 different batches (both having a equal representation of the different cell populations).

Publication Title

Innate-like functions of natural killer T cell subsets result from highly divergent gene programs.

Sample Metadata Fields

Sex, Age, Specimen part, Cell line, Subject

View Samples
accession-icon SRP081108
A non-cell autonomous mechanism of beige adipocyte renaissance in subcutaneous adipose tissue
  • organism-icon Mus musculus
  • sample-icon 30 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Two types of UCP1 positive cells-brown and beige adipocytes exist in mammals. Beige adipocytes are very plastic, and can be dynamically regulated by environment.Beige adipocytes formed postnatally in subcutaneous inguinal white adipose tissue (iWAT) lost thermogenic gene expression and multilocular morphology at adult stage, but cold could restore their “beigeing” characteristics, a phenomenon termed as beige adipocyte renaissance. Our results showed that beige cell maintenance and renaissance in adult mice were regulated by cAMP and HDAC4 signaling in white adipocytes non-cell autonomously. Genetic modulations of various components of this cAMP-HDAC4 cascade (e.g. LKB1) led to persistent browning and reduced adiposity independent of thermogenesis. To further study the mechanisms of beige adipocytes maintenance, we performed RNA-seq with samples from inguinal white adipose tissues of WT, AdipoqCre LKB1 F/F, and AdipoqCre LKB1 F/F; HDAC4 F/F mice.Our studies will move the beige adipocyte field forward and attract clinical applications to target beige adipocyte renaissance. Overall design: Samples were divided into 3 groups: inguinal white adipose tissues from WT, AdipoqCre LKB1 F/F, and AdipoqCre LKB1 F/F; HDAC4 F/F mice. 5 mice/group. cDNA libraries were prepared using Ovation RNA-seq Systems V2 and Ovation Ultralow Library Systems V2 (Nugen) and subjected to sequencing using HiSeq 2500 System (Illumina).

Publication Title

Adipocyte Liver Kinase b1 Suppresses Beige Adipocyte Renaissance Through Class IIa Histone Deacetylase 4.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE11358
Histones associated with downregulated genes are hypo-acetylated in Huntingtons disease models
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Transcriptional dysregulation plays a major role in the pathology of Huntington's disease (HD). However, the mechanisms causing selective downregulation of genes remain unknown. Histones regulate chromatin structure and thereby control gene expression; recent studies have demonstrated a therapeutic role for histone deacetylase (HDAC) inhibitors in polyglutamine diseases. This study demonstrates that despite no change in overall acetylated histone levels, histone H3 is hypo-acetylated at promoters of downregulated genes in R6/2 mice, ST14a and STHdh cells, as demonstrated by in vivo chromatin immunoprecipitation. In addition, HDAC inhibitor treatment increases association of acetylated histones with downregulated genes and corrects mRNA abnormalities. In contrast, there is a decrease in mRNA levels in wild-type cells following treatment with a histone acetyltransferase inhibitor. Although changes in histone acetylation correlate with decreased gene expression, histone hypo-acetylation may be a late event, as no hypo-acetylation is observed in 4-week-old R6/2 mice. Nevertheless, treatment with HDAC inhibitors corrects mRNA abnormalities through modification of histone proteins and may prove to be of therapeutic value in HD.

Publication Title

Histones associated with downregulated genes are hypo-acetylated in Huntington's disease models.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP076391
IL-33 and ST2 license beige and brown adipocytes for uncoupled respiration
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

For placental mammals, the transition from the in utero maternal environment to postnatal life requires the activation of thermogenesis to maintain their core temperature. This is primarily accomplished by induction of uncoupling protein 1 (UCP1) in brown and beige adipocytes, the principal sites for uncoupled respiration. Despite its importance, how placental mammals license their thermogenic adipocytes to participate in postnatal uncoupled respiration is not known. Here, we provide evidence that the 'alarmin' IL-33, a nuclear cytokine that activates type 2 immune responses, licenses brown and beige adipocytes for uncoupled respiration. We find that, in absence of IL-33 or ST2, beige and brown adipocytes develop normally but fail to express an appropriately spliced form of Ucp1 mRNA, resulting in absence of UCP1 protein, and impairment in uncoupled respiration and thermoregulation. Together, these data suggest that IL-33 and ST2 function as a developmental switch to license thermogenesis during the perinatal period. Overall design: mRNA profiles of brown adipose tissues and inguinal white adipose tissues from postnatal day 0.5 and 24, respectively, WT and IL-33 knockout mice.

Publication Title

Perinatal Licensing of Thermogenesis by IL-33 and ST2.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE24581
Small Molecule Amiloride Modulates Oncogenic RNA Alternative Splicing to Devitalize Human Hepatocellular Carcinoma Huh-7 Cells
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [probe set (exon) version (huex10st)

Description

Screening small molecules and drugs for activity to modulate alternative splicing, we found that amiloride, distinct from four other intracellular pH-affecting analogues, could normalize the splicing of BCL-X, HIPK3 and RON/MISTR1 transcripts in human hepatocellular carcinoma Huh-7 cells. To elucidate the underlying mechanisms, our proteomic analyses of amiloride-treated cells detected hypo-phosphorylation of splicing factor SF2/ASF and also decreased levels of SRp20 and two un-identified SR proteins. We further observed decreased phosphorylation of AKT, ERK1/2 and PP1, while increased phosphorylation of p38 and JNK, suggesting that amiloride treatment down-regulated kinases and up-regulated phosphatases in the signal pathways known to affect the splicing factor protein phosphorylation. The amiloride effects of splicing factor protein hypo-phosphorylation andnormalizedoncogenic RNA splicing were both abrogated by pre-treatment with a PP1 inhibitor. We then performed global exon array analysis of Huh-7 cells treated with amiloride for 24 hours. Using gene array chips (Affymetrix GeneChip Human Exon 1.0 ST Array of >518000 exons of 42974 genes) for exon array analysis (set parameters of correlation coefficient 0.7, splicing index -1.585 , and log2 ratio -1.585), we found that amiloride influenced the splicing patterns of 551 genes involving at least 584 exons, which included 495 known protein-coding genes involving 526 exons, many of which play key roles in functional networks of ion transport, extracellular matrix, cytoskeletons and genome maintenance. Cellular functional analyses revealed subsequent invasion and migration defects, cell cycle disruption, cytokinesis impairment, and lethal DNA degradation in amiloride-treated Huh-7 cells. This study thus provides mechanistic underpinnings for exploiting small molecule modulation of abnormal RNA splicing for cancer therapeutics.

Publication Title

Small molecule amiloride modulates oncogenic RNA alternative splicing to devitalize human cancer cells.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP155778
Activated CARD11 accelerates germinal center kinetics, promoting mTORC1 and terminal differentiation.
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

This scRNA-seq experiment is an integral part of a manuscript with the above title. Our analysis of the scRNA-seq data suggests that activated CARD11 promotes immunoglobulin class-switching in germinal center B cells and generation of IgG1-secreting plasma cells. Overall design: Single-cell suspensions were prepared from spleens harvested from mice 5 days post immunization with sheep red blood cells. B cells were enriched using an immunomagnetic negative selection kit. scRNA-seq was performed using the Chromium product suite by 10x Genomics.

Publication Title

Activated CARD11 accelerates germinal center kinetics, promoting mTORC1 and terminal differentiation.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE86544
Expression profiling of cutaneous squamous cell carcinoma with perineural invasion implicates the p53 pathway in the process
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Squamous cell carcinoma (SCC) is the second most common cancer worldwide and accounts for approximately 30% of all keratinocyte cancers. The vast majority of cutaneous SCCs of the head and neck (cSCCHN) are readily curable with surgery and/or radiotherapy unless high-risk features are present. Perineural invasion (PNI) is recognized as one of these high-risk features. The molecular changes during clinical PNI in cSCCHN have not been previously investigated. In this study, we assessed the global gene expression differences between cSCCHN with or without incidental or clinical PNI. The results of the analysis showed signatures of gene expression representative of activation of p53 in tumors with PNI compared to tumors without, amongst other alterations. Immunohistochemical staining of p53 showed cSCCHN with clinical PNI to be more likely to exhibit a diffuse over-expression pattern, with no tumors showing normal p53 staining. DNA sequencing of cSCCHN samples with clinical PNI showed no difference in mutation number or position with samples without PNI, however a significant difference was observed in regulators of p53 degradation, stability and activity. Our results therefore suggest that cSCCHN with clinical PNI may be more likely to contain alterations in the p53 pathway, compared to cSCCHN without PNI.

Publication Title

Expression profiling of cutaneous squamous cell carcinoma with perineural invasion implicates the p53 pathway in the process.

Sample Metadata Fields

Disease, Disease stage

View Samples
accession-icon SRP110714
Transcription factor Foxo1 is essential for IL-9 induction in T helper cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Interleukin 9 (IL-9) producing helper T (Th9) cells play a crucial role in allergic inflammation, autoimmunity, immunity to extracellular pathogens and anti-tumor immune response. In addition to Th9, Th2, Th17 and Foxp3+ Treg cells produce IL-9. Transcription factor that is critical for IL-9 induction in Th2, Th9 and Th17 cells has not been identified. Here we show that Foxo1, a forkhead family transcription factor, requires for IL-9 induction in Th9 and Th17 cells. We further show that inhibition of AKT enhances IL-9 induction in Th9 cells while it reciprocally regulates IL-9 and IL-17 in Th17 cells via Foxo1. Mechanistically, Foxo1 binds and transactivates IL-9 and IRF4 promoters in Th9, Th17 and iTregs. Furthermore, loss of Foxo1 attenuates IL-9 in mouse and human Th9 and Th17 cells, and ameliorates allergic inflammation in asthma. Our findings thus identify that Foxo1 is essential for IL-9 induction in Th9 and Th17 cells. Overall design: Transcriptional analysis of Th0 and TGF-beta 1 + IL-4 induced Th9 cells

Publication Title

Transcription factor Foxo1 is essential for IL-9 induction in T helper cells.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE47426
Expression Data from murine control and IL6ralpha-deficient macrophages stimulated with Interleukin-6
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

IL-6 induces IL4ralpha expression in macrophages. This mechanism is necessary to promote macrophage polarization towards an M2-phenotype and is crucial to limit the inflammatory response both upon obesity and LPS-endotoxemia.

Publication Title

Signaling by IL-6 promotes alternative activation of macrophages to limit endotoxemia and obesity-associated resistance to insulin.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact