refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 2981 results
Sort by

Filters

Technology

Platform

accession-icon SRP139376
Gene-by-sex interactions in mitochondrial functions and tissue-specific gene expression in cardio-metabolic traits
  • organism-icon Mus musculus
  • sample-icon 57 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We report a multi-omic study of sex differences and gene-by-sex interactions across a panel of 100 inbred strains of mice (the Hybrid Mouse Diversity Panel, HMDP), with a focus on metabolic and cardiovascular traits. For all traits examined, including obesity, insulin resistance, fatty liver, atherosclerosis, and gut microbiota composition, sex differences were influenced by genetic background. Loci identified by genome-wide association studies (GWAS) of the traits were frequently influenced by sex. Lyplal1, a gene implicated in human obesity, was shown to underlie a sex-specific locus for diet induced obesity. Many of the sex-dependent traits showed interdependencies as judged by correlation and shared gene expression patterns, indicating higher order regulation. Global gene expression analyses of tissues across the HMDP indicated that sex differences in mitochondrial functions in adipose contributed to many of the traits. Consistent with this, we observed that females tended to be more resistant to the adverse effects of a high fat diet, with smaller adipocytes and increased “browning” of white adipose tissue as compared to males. Sex-specific differences in mitochondrial activity were confirmed by examining respiration of isolated mitochondria. Gonadectomy experiments revealed thousands of genes influenced by sex hormones. In liver, a tissue exhibiting particularly strong differences in gene expression between tissues, sex hormones appeared to be the primary driver of the differences, whereas in adipose organizational effects of sex appeared to be more important. Overall design: Sixteen male and sixteen female C57BL/6J were purchased from The Jackson Laboratory (Bar Harbor). Mice were either maintained on a chow diet (Ralston Purina Company) or placed on an HF/HS diet (Research Diets D12266B) at 8 weeks of age until 16 weeks of age. At 6 weeks of age the mice were gonadectomized under isoflurane anesthesia. Scrotal regions of male mice were bilaterally incised, testes removed, and the incisions closed with wound clips. Ovaries of female mice were removed through an incision just below the rib cage. There were four mice per group. The muscle layer was sutured, and the incision closed with wound clips. In sham-operated control mice, incisions were made and closed as described above. The gonads were briefly manipulated, but remained intact. Gonadal fat and liver samples were taken for RNASeq expression profiling.

Publication Title

Gene-by-Sex Interactions in Mitochondrial Functions and Cardio-Metabolic Traits.

Sample Metadata Fields

Sex, Age, Cell line, Treatment, Subject

View Samples
accession-icon SRP137715
GRHL2-dependent enhancer switching maintains a pluripotent stem cell transcriptional subnetwork after exit from naïve pluripotency [ESC & EpiLC]
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

During early development, pluripotent cells of the epiblast show extensive rewiring of enhancers with little associated change in gene expression. The mechanisms underlying and purpose of this rewiring are largely unknown. Here we identified a transcription factor, GRHL2, that is both necessary and sufficient to activate latent enhancers during the transition from naïve embryonic stem cells (ESC) to primed epiblast cells (EpiC). GRHL2 is necessary to maintain expression of its targets in EpiCs. However, these genes are already expressed at equivalent levels in ESCs, suggesting these genes switch enhancer usage during the transition. Identification of alternative enhancers driving these genes in ESCs uncovered an enrichment for the ESC-specific KLF transcription factors. While many KLF targets remain expressed in EpiCs, GRHL2 only regulates a specific subset promoting an epithelial program. These data suggest a model where a large naïve-specific transcriptional network is partitioned into smaller networks to uncouple their regulation in EpiCs, providing more flexibility in gene regulation during lineage specification. Overall design: RNA-seq in wildtype embryonic stem cells (ESCs) and wildtype epiblast-like cells (EpiLCs)

Publication Title

GRHL2-Dependent Enhancer Switching Maintains a Pluripotent Stem Cell Transcriptional Subnetwork after Exit from Naive Pluripotency.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon GSE116846
Expression data from retinoic acid-sufficient and retinoic acid-deficient mouse airway smooth muscle [mouse ASMs]
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Observational studies in human suggest involvement of vitamin A/retinoic acid (RA) signaling in the regulation of airway smooth muscle (ASM) function, but the precise mechanisms by which RA impacts ASM phenotype is not clear. Here, we generated trascriptional profiles from two different models of RA-sufficient and RA-deficient mouse ASM in order to determine the molecular targets of RA in ASM (VAS/VAD, CTR/BMS)

Publication Title

Retinoic acid signaling is essential for airway smooth muscle homeostasis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE83666
EGFR-mediated FASN signaling promotes TKI resistant Non-Small Cell Lung Cancer tumor cell survival
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Metabolic reprogramming is widely known as a hallmark of cancer cells to allow adaptation of cells to sustain survival signals. In the past decade, altered lipid metabolism has been recognized to be a property of malignant cells. In this report, we describe a novel oncogenic signaling pathway exclusively in tyrosine kinase inhibitor (TKI)-resistant epidermal growth factor receptor (EGFR) mutant non-small cell lung cancer (NSCLC). EGFR mediates TKI-resistance through regulation of the fatty acid synthase (FASN), and inhibition of this pathway using the FASN inhibitor Orlistat, triggers cell death and reduces tumor sizes both in culture systems and in vivo. Together, data shown here provide compelling evidence that the fatty acid metabolism pathway is a candidate target for TKI-resistant NSCLC treatment.

Publication Title

Fatty acid synthase mediates EGFR palmitoylation in EGFR mutated non-small cell lung cancer.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP066968
Estrogen receptor coregulator binding modulators (ERXs) effectively target estrogen receptor positive human breast cancers
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

We examined the transcriptional chagnes modulated by ECBI-11 by perfroming global transcriptome analysis. ZR75 cells were treated with either control or ECBI-11 in the presence of E2 for 48 h and the isolated RNA was utilized for RNA-seq analysis. Our results demonstrated that ECBI modulated several genes that are involved in cell cycle, breast cancer signaling, estrogen signaling and apoptosis. Overall design: Total RNA was isolated from the ZR75 cells that were treated with vehicle or ECBI for 48 h. Illumina TruSeq RNA Sample Preparation was performed following manufacturer''s protocol. Samples were run on an Illumina HiSeq 2000 in duplicate. The combined raw reads were aligned to UCSC hg19 and genes were annotated by Tophat. Genes were annotated and quantified by HTSeq-DESeq pipeline.

Publication Title

Estrogen receptor coregulator binding modulators (ERXs) effectively target estrogen receptor positive human breast cancers.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE157024
Expression of PIK3CA WT and mutant colon cancer cells grown with (+ Gln)or without glutamine (-Gln)
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.1 ST Array (hugene21st)

Description

We used human gene expression microarray to interrogate how glutamine deprivation differentially impact gene expession in isogenic PIK3CA mutant and WT cells.

Publication Title

5-Fluorouracil Enhances the Antitumor Activity of the Glutaminase Inhibitor CB-839 against <i>PIK3CA</i>-Mutant Colorectal Cancers.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE87431
H19 Noncoding RNA, an independent prognostic factor, regulates essential Rb-E2F and CDK8/-catenin signaling in colorectal cancer
  • organism-icon Homo sapiens
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

H19 Noncoding RNA, an Independent Prognostic Factor, Regulates Essential Rb-E2F and CDK8-β-Catenin Signaling in Colorectal Cancer.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE87430
Expression data from HCT116 cells following H19 knockdown
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

Knockdown of H19 leads to cell cycle arrest, reduced cell proliferation, and reduced cell migration in HCT116 cells.

Publication Title

H19 Noncoding RNA, an Independent Prognostic Factor, Regulates Essential Rb-E2F and CDK8-β-Catenin Signaling in Colorectal Cancer.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE87429
Expression data from HCT116 cells following CTNNB1 knockdown
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

We used microarrays to detail the global programme of gene expression following CTNNB1 knockdown in HCT116 cells

Publication Title

H19 Noncoding RNA, an Independent Prognostic Factor, Regulates Essential Rb-E2F and CDK8-β-Catenin Signaling in Colorectal Cancer.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE87428
Expression data from HCT116 cells following CDK8 knockdown
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

We used microarrays to detail the global programme of gene expression following CDK8 knockdown in HCT116 cells

Publication Title

H19 Noncoding RNA, an Independent Prognostic Factor, Regulates Essential Rb-E2F and CDK8-β-Catenin Signaling in Colorectal Cancer.

Sample Metadata Fields

Cell line, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact