refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 733 results
Sort by

Filters

Technology

Platform

accession-icon SRP109284
Developmentally-Faithful and Effective Human Erythropoiesis in Immunodeficient and Kit Mutant Mice
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Immunodeficient mouse models have been valuable for studies of human hematopoiesis, but high-fidelity recapitulation of erythropoiesis in most xenograft recipients remains elusive. Recently developed immunodeficient and Kit mutant mice, however, have provided a suitable background to achieve higher-level human erythropoiesis after long-term hematopoietic engraftment. While there has been some characterization of human erythropoiesis in these models, a comprehensive analysis of various developmental stages has not yet been reported. Here, we have utilized cell surface phenotypes, morphologic analyses, and molecular studies to fully characterize human erythropoiesis from multiple developmental stages in immunodeficient and Kit mutant mouse models following long-term hematopoietic stem and progenitor cell engraftment. We show that human erythropoiesis in such models demonstrates complete maturation and enucleation, as well as developmentally appropriate globin gene expression. These results provide a framework for future studies to utilize this model system for interrogating disorders affecting human erythropoiesis and for developing improved therapeutic approaches. Overall design: (mRNA-seq) RNA-seq of human CD235a+ cells isolated 14-16 weeks post-implantation from mouse bone marrow were performed for three biological replicates each of mice xenograted with adult bone marrow-derived human CD34+ cells and cord blood-derived CD34+ cells.

Publication Title

Developmentally-faithful and effective human erythropoiesis in immunodeficient and Kit mutant mice.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE6184
Anaplastic Lymphoma Kinase signature
  • organism-icon Homo sapiens
  • sample-icon 32 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Anaplastic Large Cell Lymphomas (ALCL) represent a subset of lymphomas in which the Anaplastic Lymphoma Kinase (ALK) gene is frequently fused to the NPM gene. We previously demonstrated that the constitutive phosphorylation of ALK chimeric proteins is sufficient to induce cellular transformation in vitro and in vivo, and that ALK activity is strictly required for the survival of ALK positive ALCL cells. To elucidate the signaling pathways required for ALK-mediated transformation and tumor maintenance, we analyzed the transcriptomes of multiple ALK positive ALCL cell lines abrogating their ALK-mediated signaling by inducible ALK RNA interference (RNAi) or with potent and cell permeable ALK inhibitors. Transcripts derived from the gene expression profiling (GEP) analysis uncovered a reproducible signature, which included a novel group of ALK-regulated genes. Functional RNAi screening on a set of these ALK transcriptional targets revealed that the transcription factor C/EBPb and the anti-apoptotic protein BCL2A1 are absolutely necessary to induce cell transformation and/or to sustain the growth and survival of ALK positive ALCL cells. Thus, we proved that an experimentally controlled and functionally validated GEP analysis represents a powerful tool to identify novel pathogenetic networks and validate biologically suitable target genes for therapeutic interventions.

Publication Title

Functional validation of the anaplastic lymphoma kinase signature identifies CEBPB and BCL2A1 as critical target genes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE117680
Microarray expression data on cultured dermal fibroblasts from patients affected with classical Ehlers Danlos syndrome (cEDS)
  • organism-icon Homo sapiens
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Gene expression profiling of cultured skin fibroblasts obtained from patients affected with classical Ehlers Danlos syndrome (cEDS)

Publication Title

Molecular insights in the pathogenesis of classical Ehlers-Danlos syndrome from transcriptome-wide expression profiling of patients' skin fibroblasts.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE102042
Microarray expression data obtained from human skin fibroblasts derived from patients affected with vascular Ehlers Danlos syndrome (vEDS)
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Analysis of gene expression profiling of cultured skin fibroblasts obtained from patients affected with vascular Ehlers Danlos syndrome (vEDS)

Publication Title

Transcriptome analysis of skin fibroblasts with dominant negative COL3A1 mutations provides molecular insights into the etiopathology of vascular Ehlers-Danlos syndrome.

Sample Metadata Fields

Disease

View Samples
accession-icon GSE70683
Microarray expression data from three arterial tortuosity syndrome (ATS) patients' skin fibroblasts with recessive SLC2A10 mutations
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

To screen for candidate genes that may contribute to the pathogenesis of ATS

Publication Title

GLUT10 deficiency leads to oxidative stress and non-canonical αvβ3 integrin-mediated TGFβ signalling associated with extracellular matrix disarray in arterial tortuosity syndrome skin fibroblasts.

Sample Metadata Fields

Disease

View Samples
accession-icon GSE77758
Microarray and miRNA expression data from five Ehlers-Danlos Syndrome Hypermobility type/Joint Hypermobility Syndrome (EDS-HT/JHS) patients' skin fibroblasts
  • organism-icon Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Transcriptome-Wide Expression Profiling in Skin Fibroblasts of Patients with Joint Hypermobility Syndrome/Ehlers-Danlos Syndrome Hypermobility Type.

Sample Metadata Fields

Disease, Disease stage

View Samples
accession-icon GSE77753
Microarray expression data from five Ehlers-Danlos Syndrome Hypermobility type/Joint Hypermobility Syndrome (EDS-HT/JHS) patients' skin fibroblasts
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

To unravel the molecular mechanisms potentially associated with the pathogenesis of the EDS-HT/JHS.

Publication Title

Transcriptome-Wide Expression Profiling in Skin Fibroblasts of Patients with Joint Hypermobility Syndrome/Ehlers-Danlos Syndrome Hypermobility Type.

Sample Metadata Fields

Disease, Disease stage

View Samples
accession-icon GSE14834
Characterization of B- and T-lineage ALL by Integrated Analysis of microRNA and mRNA Expression Profiles
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Acute lymphoblastic leukemia (ALL) is an heterogeneous disease comprising several subentities that differ for both immunophenotypic and molecular characteristics. Over the years, the biologic understanding of this neoplasm has largely increased. Gene expression profiling has recently allowed to identify specific signatures for the different ALL subsets and permitted identification of pathways deregulated by a given lesion. MicroRNAs (miRNAs) are small non-coding RNAs which play a pivotal role in several cellular functions. In this study, we investigated miRNA and gene expression profiles in a series of adult ALL cases by microarray analysis and combined them by bioinformatic analysis. Interestingly, those miRNAs which are differentially expressed between the ALL classes accounted for a large proportion of miRNA/mRNA expression pairs identified by the above analysis. Moreover, the analysis highlighted several putative miRNA targets involved in apoptosis and cell-cycle regulation.

Publication Title

Characterization of B- and T-lineage acute lymphoblastic leukemia by integrated analysis of MicroRNA and mRNA expression profiles.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE15942
Genomic Studies upon NeuroD6 overexpression in PC12 cells, in the presence or absence of an apoptotic stimulus
  • organism-icon Rattus norvegicus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Expression 230A Array (rae230a)

Description

During neurogenesis, expression of the basic Helix-Loop-Helix NeuroD6/Nex1/MATH-2 transcription factor parallels neuronal differentiation, while maintaining the differentiated state in the mature nervous system. To further dissect NeuroD6 differentiation properties, we previously generated a NeuroD6-overexpressing stable PC12 cell line, PC12-ND6, which displays a neuronal phenotype characterized by spontaneous neuritogenesis, accelerated NGF-induced differentiation, and increased regenerative capacity. Furthermore, we reported that NeuroD6 promotes long-term neuronal survival upon oxidative stress triggered by serum deprivation. In this study, we identified the NeuroD6-mediated transcriptional regulatory pathways linking neuronal differentiation to survival, by conducting a genome-wide microarray analysis using PC12-ND6 cells and serum deprivation as a stress paradigm. Through a series of filtering steps and a gene-ontology analysis, we found that NeuroD6 promotes distinct but overlapping gene networks, consistent with the differentiation, regeneration, and survival properties of PC12-ND6 cells. Using a gene set enrichment analysis, we provide the first evidence of a compelling link between NeuroD6 and a set of heat shock proteins in the absence of stress, which may be instrumental to confer stress tolerance to PC12-ND6 cells. Immunocytochemistry results showed that HSP27 and HSP70 interact with cytoskeletal elements, consistent with their roles in neuritogenesis and preserving cellular integrity. HSP70 also colocalizes with mitochondria located in the soma, growing neurites and growth cones of PC12-ND6 cells prior to and upon stress stimulus, consistent with its neuroprotective functions. Collectively, our findings support the notion that NeuroD6 links neuronal differentiation to survival via the network of molecular chaperones and endows the cells with increased stress tolerance.

Publication Title

NeuroD6 genomic signature bridging neuronal differentiation to survival via the molecular chaperone network.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE18239
Expression data from JAK1 wild-type and JAK1 mutation-positive T cell acute lymphoblastic leukemia blasts
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Aberrant signal transduction contributes substantially to leukemogenesis. The Janus kinase 1 (JAK1) gene encodes a cytoplasmic tyrosine kinase that noncovalently associates with a variety of cytokine receptors and plays a nonredundant role in lymphoid cell precursor proliferation, survival, and differentiation. Somatic mutations in JAK1 occur in individuals with acute lymphoblastic leukemia (ALL). JAK1 mutations were more prevalent among adult subjects with the T cell precursor ALL, where they accounted for 18% of cases, and were associated with advanced age at diagnosis, poor response to therapy, and overall prognosis

Publication Title

ALL-associated JAK1 mutations confer hypersensitivity to the antiproliferative effect of type I interferon.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact