refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 733 results
Sort by

Filters

Technology

Platform

accession-icon GSE9107
Expression data of Drosophila 3rd instar larval wing discs taken from strains selected for wing shape.
  • organism-icon Drosophila melanogaster
  • sample-icon 35 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

We measured gene expression across the whole genome in a panel of lines selected for a wing shape trait (angular offset). The lines were created in separate experiments, originating from two widely separated populations, and including multiple replicates of one population, but all were created using the same selection regime and trait. Here we evaluate the data with two objectives: 1) to identify candidate wing shape genes for future testing and validation, and 2) to assess variation among lines in the outcome of identical selection regimes

Publication Title

Microarray analysis of replicate populations selected against a wing-shape correlation in Drosophila melanogaster.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE32372
Innate response activator B cells are sentinels that guard against polymicrobial sepsis
  • organism-icon Mus musculus
  • sample-icon 21 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

Innate immunity is fundamental to recognition and clearance of bacterial infection. The relevant cells and molecules that orchestrate an effective response, however, remain incompletely understood. Here we describe a previously unknown population of B cells, which we have named innate response activator (IRA) B cells that recognize bacteria directly through TLR-4-MyD88 and protect against polymicrobial sepsis.

Publication Title

Innate response activator B cells protect against microbial sepsis.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE16740
The effect of cardiac troponin T2 knockdown on gene expression in zebrafish embryos
  • organism-icon Danio rerio
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Zebrafish Genome Array (zebrafish)

Description

We examined the transcriptional effect of preventing cardiac contraction in zebrafish embryos which can be deprived of circulation without experiencing hypoxia since the fish obtain sufficient oxygen via diffusion. Morpholino antisense knockdown of cardiac troponin T2 (tnnt2) prevented cardiac contraction without affecting vascular development. We concluded that absence of hemodynamic force induces endothelial CXCR4a up-regulation and promotes recovery of blood flow.

Publication Title

Microarray profiling reveals CXCR4a is downregulated by blood flow in vivo and mediates collateral formation in zebrafish embryos.

Sample Metadata Fields

Time

View Samples
accession-icon GSE27280
Pompe disease induced pluripotent stem cells for pathogenesis modeling, drug testing and disease marker identification
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Pompe disease is caused by autosomal recessive mutations in the GAA gene, which encodes acid alpha-glucosidase. Although enzyme replacement therapy has recently improved patient survival greatly, the results in skeletal muscles and for advanced disease are still not satisfactory. Here, we report the derivation of Pompe disease induced pluripotent stem cells (PomD-iPSCs) and their potential for pathogenesis modeling, drug testing and disease marker identification. PomD-iPSCs maintained pluripotent features, and had low GAA activity and high glycogen content. Cardiomyocyte-like cells (CMLCs) differentiated from PomD-iPSCs recapitulated the hallmark Pompe disease pathophysiological phenotypes, including high levels of glycogen, abundant intracellular LAMP-1- or LC3-positive granules, and multiple ultrastructural aberrances. Drug rescue assessment showed that exposure of PomD-iPSC-derived CMLCs to rhGAA reversed the major pathologic phenotypes. Further, L-carnitine and 3- methyladenine treatment reduced defective cellular respiration and buildup of phagolysosomes, respectively, in the diseased cells. By comparative transcriptome analysis, we identified glycogen metabolism, lysosome and mitochondria related marker genes whose expression robustly correlated with the therapeutic effect of drug treatment in PomD-iPSC-derived CMLCs. Collectively, these results demonstrate that PomD-iPSCs are a promising in vitro disease model for development of novel therapeutic strategies for Pompe disease.

Publication Title

Human Pompe disease-induced pluripotent stem cells for pathogenesis modeling, drug testing and disease marker identification.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE99777
Expression data of adult quiescent and activated mouse neural stem cells
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Neural stem cells were sorted according to their activated or quiescent state by flow cytometry using a set of 3 markers (LeX, CD24 and EGFR)

Publication Title

Distinct Molecular Signatures of Quiescent and Activated Adult Neural Stem Cells Reveal Specific Interactions with Their Microenvironment.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE35603
Network Biology of Tumor Stem-like Cells Identified a Regulatory Role of CBX5 in Lung Cancer
  • organism-icon Homo sapiens
  • sample-icon 74 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Mounting evidence points to a link between a cancer possessing stem-like properties and a worse prognosis. To understand the biology, a common approach is to integrate network biology with signal processing mechanics. That said, even with the right tools, predicting the risk for a highly susceptible target using only a handful of gene signatures remains very difficult. By compiling the expression profiles of a panel of tumor stem-like cells (TSLCs) originating in different tissues, comparing these to their parental tumor cells (PTCs) and the human embryonic stem cells (hESCs), and integrating network analysis with signaling mechanics, we propose that network topologically-weighted signaling processing measurements under tissue-specific conditions can provide scalable and predicable target identification.

Publication Title

Network biology of tumor stem-like cells identified a regulatory role of CBX5 in lung cancer.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE40349
Expression data from either growing IMR90 human fibroblasts or senescent IMR90 cells with Ras expression and indicated hairpins
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Oncogene-induced senescence is an anti-proliferative stress response program that acts as a fail-safe mechanism to limit oncogenic transformation and is regulated by the retinoblastoma protein (RB) and p53 tumor suppressor pathways. We identify the atypical E2F family member E2F7 as the only E2F transcription factor potently upregulated during oncogene-induced senescence, a setting where it acts in response to p53 as a direct transcriptional target. Once induced, E2F7 binds and represses a series of E2F target genes and cooperates with RB to efficiently promote cell cycle arrest and limit oncogenic transformation. Disruption of RB triggers a further increase in E2F7, which induces a second cell cycle checkpoint that prevents unconstrained cell division despite aberrant DNA replication. Mechanistically, E2F7 compensates for the loss of RB in repressing mitotic E2F target genes.

Publication Title

The atypical E2F family member E2F7 couples the p53 and RB pathways during cellular senescence.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE43922
H3K4 demethylation by Jarid1a and Jarid1b contributes to retinoblastoma-mediated gene silencing during cellular senescence
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

H3K4 demethylation by Jarid1a and Jarid1b contributes to retinoblastoma-mediated gene silencing during cellular senescence.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE43920
H3K4 demethylation by Jarid1a and Jarid1b contributes to retinoblastoma-mediated gene silencing during cellular senescence (expression)
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Cellular senescence is a tumor-suppressive program that involves chromatin reorganization and specific changes in gene expression that trigger an irreversible cell-cycle arrest. We have examined the effect of suppressing the histone demethylases Jarid1a and Jarid1b on the senescence-associated gene expression signatures.

Publication Title

H3K4 demethylation by Jarid1a and Jarid1b contributes to retinoblastoma-mediated gene silencing during cellular senescence.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE19899
Dissecting the unique role of the retinoblastoma tumor suppressor during cellular senescence
  • organism-icon Homo sapiens
  • sample-icon 32 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Dissecting the unique role of the retinoblastoma tumor suppressor during cellular senescence.

Sample Metadata Fields

Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact