refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 274 results
Sort by

Filters

Technology

Platform

accession-icon GSE6769
Expression data from Pseudomonas aeruginosa (wild type and lasRrhlR mutant strains) exposed to human neutrophils
  • organism-icon Pseudomonas aeruginosa pao1, Pseudomonas aeruginosa
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Pseudomonas aeruginosa Array (paeg1a)

Description

In the present in vitro study, interactions between P. aeruginosa (sessile biofilms as well as planktonic cells) and PMNs were analyzed by means of DNA microarray based transcriptomics. We found that the P. aeruginosa wild type biofilms, in contrast to planktonic cultures and quorum sensing (QS) deficient strains, respond to PMN exposure in a rather aggressive manner. The response does not involve protective mechanisms such as those involved in oxidative stress. Rather it is dominated by QS controlled virulence determinants such as those encoded by pqs, phz, rhlAB, all of which are designed to cripple Eukaryotic cells including PMNs and macrophages. Our comparative analysis supports the view that QS plays a major role in mechanisms by which P. aeruginosa evades host defense systems.

Publication Title

Pseudomonas aeruginosa recognizes and responds aggressively to the presence of polymorphonuclear leukocytes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE9566
A Transcriptome Database for Astrocytes, Neurons, and Oligodendrocytes
  • organism-icon Mus musculus
  • sample-icon 38 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

A Transcriptome Database for Astrocytes, Neurons, and Oligodendrocytes: A New Resource for Understanding Brain Development and Function

Publication Title

A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE43613
CXCL12 Production by Early Mesenchymal Progenitors is Required for Hematopoietic Stem Cell Maintenance
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Hematopoietic stem cells (HSCs) primarily reside in the bone marrow where signals generated by stromal cells regulate their self-renewal, proliferation, and trafficking. Endosteal osteoblasts and perivascular stromal cells including endothelial cells3, CXCL12-abundant reticular (CAR) cells, leptin-receptor positive stromal cells, and nestin-GFP positive mesenchymal progenitors have all been implicated in HSC maintenance. However, it is unclear if specific hematopoietic progenitor cell (HPC) subsets reside in distinct niches defined by the surrounding stromal cells and the regulatory molecules they produce. CXCL12 (stromal-derived factor-1, SDF-1) regulates both HSCs and lymphoid progenitors and is expressed by all of these stromal cell populations.

Publication Title

CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE55095
Hematopoietic stem cells from mice treated with G-CSF or saline alone for 36 hours and 7 days
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

G-CSF regulates hematopoietic stem cell activity, in part, through activation of Toll-like receptor signaling.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE55093
Hematopoietic stem cells from mice treated with G-CSF or saline alone for 36 hours
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Recent studies demonstrate that inflammatory signals regulate hematopoietic stem cells (HSCs). Granulocyte-colony stimulating factor (G-CSF) is often induced with infection and plays a key role in the stress granulopoiesis response. However, its effects on HSCs are less clear. Herein, we show that treatment with G-CSF induces expansion and increased quiescence of phenotypic HSCs, but causes a marked, cell-autonomous HSC repopulating defect associated with induction of toll-like receptor (TLR) expression and signaling. The G-CSF-mediated expansion of HSCs is reduced in mice lacking TLR2, TLR4 or the TLR signaling adaptor MyD88. Induction of HSC quiescence is abrogated in mice lacking MyD88 or in mice treated with antibiotics to suppress intestinal flora. Finally, loss of TLR4 or germ free conditions mitigates the G-CSF-mediated HSC repopulating defect. These data suggest that low level TLR agonist production by commensal flora contributes to the regulation of HSC function and that G-CSF negatively regulates HSCs, in part, by enhancing TLR signaling.

Publication Title

G-CSF regulates hematopoietic stem cell activity, in part, through activation of Toll-like receptor signaling.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE55094
Hematopoietic stem cells from mice treated with G-CSF or saline alone for 7 days
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Recent studies demonstratethat inflammatory signals regulate hematopoietic stem cells (HSCs). Granulocyte-colony stimulating factor (G-CSF) is often induced with infection and plays a key role in the stress granulopoiesis response. However, its effects on HSCs are less clear. Herein, we show that treatment with G-CSF induces expansion and increased quiescence of phenotypic HSCs, but causes a marked, cell-autonomous HSC repopulating defect associated with induction of toll-like receptor (TLR) expression and signaling. The G-CSF-mediated expansion of HSCs is reduced in mice lacking TLR2, TLR4 or the TLR signaling adaptor MyD88. Induction of HSC quiescence is abrogated in mice lacking MyD88 or in mice treated with antibiotics to suppress intestinal flora. Finally, loss of TLR4 or germ free conditions mitigates the G-CSF-mediated HSC repopulating defect. These data suggest that low level TLR agonist production by commensal flora contributes to the regulation of HSC function and that G-CSF negatively regulates HSCs, in part, by enhancing TLR signaling.

Publication Title

G-CSF regulates hematopoietic stem cell activity, in part, through activation of Toll-like receptor signaling.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE4536
Tumor stem cells more closely mirror the phenotype and genotype of primary human tumors than do cancer cell lines
  • organism-icon Homo sapiens
  • sample-icon 97 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The concept of tumor stem cells (TSCs) provides a new paradigm for understanding tumor biology, although it remains unclear whether TSCs will prove to be a more robust model than traditional cancer cell lines. We demonstrate marked phenotypic and genotypic differences between primary human tumor-derived TSCs and their matched glioma cell lines. TSCs derived directly from primary glioblastomas harbor extensive similarities to normal NSC and recapitulate the genotype, gene expression patterns and in vivo biology of human glioblastomas. By contrast, the matched, traditionally grown tumor cell lines do not secondary to in vitro genomic alterations. These findings suggest that TSCs may be a more reliable model than many commonly utilized cancer cell lines for understanding the biology of primary human tumors. Analysis of gene expression data is described in Lee et al., Cancer Cell, 2006.

Publication Title

Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE48116
Neuropeptides:developmental signals in placode progenitor formation
  • organism-icon Gallus gallus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Chicken Genome Array (chicken)

Description

Few families of signaling factors have been implicated in the control of development. Here we identify the neuropeptides nociceptin and somatostatin, a neurotransmitter and neuroendocrine hormone, as a class of developmental signals in chick and zebrafish. We show that signals from the anterior mesendoderm are required for the formation of anterior placode progenitors with one of the signals being somatostatin. Somatostatin controls ectodermal expression of nociceptin and both peptides regulate Pax6 in lens and olfactory progenitors. Consequently, loss of somatostatin and nociceptin signaling leads to severe reduction of lens formation. Our findings not only uncover these neuropeptides as developmental signals, but also identify a long-sought-after mechanism that initiates Pax6 in placode progenitors and may explain the ancient evolutionary origin of neuropeptides, pre-dating a complex nervous system.

Publication Title

Neuropeptides: developmental signals in placode progenitor formation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE46749
Effect of vitamin D on gene expression in human alveolar type II cells
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

To test whether vitamin D has a functionally important effect upon primary alveolar epithelial type II cells we used gene expression microarray to identify genes that are regulated by 25-dihydroxyvitamin D in adult alveolar type II cells.

Publication Title

Vitamin D deficiency contributes directly to the acute respiratory distress syndrome (ARDS).

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon GSE81023
Cell interactions, signals and transcriptional hierarchy governing placode progenitor induction
  • organism-icon Gallus gallus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Chicken Genome Array (chicken)

Description

Cranial placodes contribute to all sense organs and sensory ganglia in the vertebrate head. Despite their diversity they originate from a common pool of Six1/Eya2+ progenitors. In a molecular screen we identify new factors upstream of the Six1/Eya2 cassette and use these to dissect the transcriptional hierarchy that controls progenitor specification. We find that although two different tissues, the lateral head mesoderm and the prechordal mesendoderm, induce placode progenitors, both initiate a common transcriptional state, but over time gradually impart regional character.

Publication Title

Cell interactions, signals and transcriptional hierarchy governing placode progenitor induction.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact