refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 274 results
Sort by

Filters

Technology

Platform

accession-icon SRP079189
Dysregulated synaptic gene expression and axonal neuropathology in a human iPSC-based model of familial Parkinson''s disease
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We generated de novo induced pluripotent stem cells (iPSCs) from two Parkinson’s Disease patients (PD) harboring the p.A53T mutation. iPSC-derived mutant neurons displayed disease-relevant phenotypes at basal conditions, including protein aggregation, compromised neuritic outgrowth and contorted axons with swollen varicosities containing aSyn and tau. We have performed RNA Sequencing (RNA-Seq) of neurons from PD patient and control samples. RNA sequencing has also been performed to neurons derived from HUES samples subjected to the same differentiation protocol as reference. Overall design: We have performed RNA Sequencing (RNA-Seq) in neurons PD and control samples (two clones from each individual), along with HUES-derived neurons.

Publication Title

Defective synaptic connectivity and axonal neuropathology in a human iPSC-based model of familial Parkinson's disease.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP094578
Cooperative binding of Oct4, Sox2, and Klf4 with stage-specific transcription factors orchestrates reprogramming [RNA-seq]
  • organism-icon Mus musculus
  • sample-icon 22 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer

Description

Oct4, Sox2, Klf4, and cMyc (OSKM) reprogram somatic cells to pluripotency. To gain a mechanistic understanding of their function, we mapped OSKM-binding, stage-specific transcription-factors (TFs), and chromatin-states in discrete reprogramming stages and performed loss- and gain-of-function experiments. We found that early in reprogramming OSK extensively bind somatic-enhancers and initiate their decommissioning by recruiting Hdac1. Concurrently, OSK engage other sites, including specific pluripotency-enhancers, and induce the relocation of somatic TFs to these sites and away from somatic-enhancers, extending somatic-enhancer decommissioning genome-wide. Pluripotency-enhancer selection early in reprogramming occurs predominantly at sites with high OSK-motif densities and requires collaborative binding by OSK. Most pluripotency-enhancers are selected later and occupied by OS and stage-specific-TFs like Esrrb. Overexpression of stage-specific-TFs influences reprogramming efficiency by changing OSK-occupancy, somatic-enhancer decommissioning, and pluripotency-enhancer selection. We propose that collaborative interactions among OSK and with stage-specific-TFs direct both somatic-enhancer decommissioning and pluripotency-enhancer selection, which drives the enhancer reorganization underlying reprogramming Overall design: RNA-seq

Publication Title

Cooperative Binding of Transcription Factors Orchestrates Reprogramming.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP090309
Human naïve pluripotent stem cells exhibit X chromosome dampening and X-inactivation (single cell RNA-Seq)
  • organism-icon Homo sapiens
  • sample-icon 236 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

Naïve human embryonic stem cells (hESCs) can be derived from primed hESCs or directly from blastocysts, but their X-chromosome state has remained unresolved. We found that the inactive X-chromosome (Xi) of primed hESCs was reactivated in naïve culture conditions. Similar to cells of the blastocyst, resulting naive cells exhibited two active X-chromosomes with XIST expression and chromosome-wide transcriptional dampening, and initiated XIST-mediated X-inactivation upon differentiation. Both establishment and exit from the naïve state (differentiation) happened via an XIST-negative XaXa intermediate. Together, these findings identify a cell culture system for functionally exploring the two X-chromosome dosage compensation processes in early human development: X-dampening and X-inactivation. Furthermore, the naïve state reset Xi abnormalities of primed hESCs, providing cells better suited for downstream applications. However, naïve hESCs displayed differences to the embryo because XIST expression was predominantly mono-allelic instead of bi-allelic, and X-inactivation was non-random, indicating the need for further culture improvement. Overall design: Differentiated naïve human embryonic stem cells and naïve human embryonic stem cells at different passages (Exp1 for late passage, Exp2 for early passage) were subjected to single cell RNA sequencing by the Fluidigm C1 Single-Cell Auto Prep System.

Publication Title

Human Naive Pluripotent Stem Cells Model X Chromosome Dampening and X Inactivation.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE44084
Expression data from pre-iPSCs with a control, histone methyltransferase or Cbx3 (HP1g) knockdown
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Transition from a partially reprogrammed pre-iPSC state to iPSC state can be achieved by modulating levels of histone modifying enzymes or proteins that can bind to histone modifications

Publication Title

Proteomic and genomic approaches reveal critical functions of H3K9 methylation and heterochromatin protein-1γ in reprogramming to pluripotency.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP091767
Human embryonic stem cells do not change their X-inactivation status during differentiation [RNA-Seq]
  • organism-icon Homo sapiens
  • sample-icon 34 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Female human ESC-lines can carry active X-chromosomes (Xa) or an XIST-RNA-coated inactive X-chromosome (XiXIST+). Additionally, many ESC lines have abnormal X-chromosomeinactivation (XCI)-states where the Xi no longer expresses XIST-RNA and has transcriptionally active regions (eroded Xi=Xe). The fate of each XCI-state upon differentiation is unclear because individual lines often contain a mixture of XCI-states. Here, we established homogeneous XiXa, XeXa, and XaXa ESC-lines. Employing RNA-FISH, RNA-sequencing and DNA methylation analyses, we found that these lines were unable to initiate XIST-expression and X-chromosome-wide silencing upon differentiation indicating that the ESC XCI-state is maintained in differentiated cells. Consequently, differentiated XeXa and XaXa cells displayed higher levels of X-linked gene-expression than XiXa cells. Although global transcriptional compensation between X-chromosomes and autosomes is not required for female ESC-differentiation, the degree of X-chromosome-silencing influences differentiation efficiencies. Our data suggest that the XiXIST+Xa state is inherent to human ESCs and that all other XCI-states, including XaXa, are abnormal and arise during ESC-derivation or maintenance. Overall design: RNA-seq was used to measure the expression state of X-linked and autosomal genes in undifferentiated human embryonic stem cells with different X-chromosome states and their differentiated cells.

Publication Title

Human Embryonic Stem Cells Do Not Change Their X Inactivation Status during Differentiation.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE30973
The Histone Methyltransferase Wbp7 Controls Macrophage Function through GPI Glycolipid Anchor Synthesis
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The histone methyltransferase Wbp7 controls macrophage function through GPI glycolipid anchor synthesis.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE30971
The Histone Methyltransferase Wbp7 Controls Macrophage Function through GPI Glycolipid Anchor Synthesis. [Expression Profile]
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Histone methyltransferases catalyze site-specific deposition of methyl groups, enabling recruitment of transcriptional regulators. In mammals, trimethylation of lysine 4 in histone H3, a modification localized at the transcription start sites of active genes, is catalyzed by six enzymes (SET1a and SET1b, MLL1MLL4) whose specific functions are largely unknown. By using a genomic approach, we found that in macrophages, MLL4 (also known as Wbp7) was required for the expression of Pigp, an essential component of the GPI-GlcNAc transferase, the enzyme catalyzing the first step of glycosylphosphatidylinositol (GPI) anchor synthesis. Impaired Pigp expression in Wbp7-/- macrophages abolished GPI anchor-dependent loading of proteins on the cell membrane. Consistently, loss of GPI-anchored CD14, the coreceptor for lipopolysaccharide (LPS)

Publication Title

The histone methyltransferase Wbp7 controls macrophage function through GPI glycolipid anchor synthesis.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon SRP128913
Next Generation Sequencing Facilitates Quantitative Analysis of the Effect of GM-CSF on the Transcriptomes of Alveolar and Exudative Lung Macrophages from Influenza-infected C57BL/6 Mice
  • organism-icon Mus musculus
  • sample-icon 26 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

The transcriptomes of FACS-sorted siglec-F+ alveolar macrophages and siglec-f- CD11b+ exudative macrophages from inducible airway GM-CSF over-expressing transgenic mice (DTGM) were compared to non-inducible littermate controls during influenza A virus infection. Overall design: Examination of effect of GM-CSF on airway macrophages during influenza A virus infection

Publication Title

GM-CSF overexpression after influenza a virus infection prevents mortality and moderates M1-like airway monocyte/macrophage polarization.

Sample Metadata Fields

Sex, Specimen part, Cell line, Subject

View Samples
accession-icon GSE29912
The effect of GW3965 and dexamethasone on gene expression of rat livers
  • organism-icon Rattus norvegicus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

GLUCOCORTICOIDS are steroid hormones that strongly influence intermediary carbohydrate metabolism by increasing the transcription rate of glucose-6-phosphatase (G6Pase) a key enzyme of gluconeogenesis, and suppress the immune system which makes them one of the most important therapeutic agents in the treatment of allergic, autoimmune and inflammatory diseases. The biologic actions of circulating glucocorticoids are transmitted to the cells nucleus by the glucocorticoid receptor (GR). The nuclear liver X receptors (LXRs) bind to cholesterol metabolites, heterodimerize with the retinoid X receptor (RXR), and regulate the cholesterol turnover, the hepatic glucose metabolism by decreasing the expression of G6Pase, and repress a set of inflammatory genes in immune cells. The aim of this study is to evaluate the crosstalk between the GR- and LXR-mediated signaling systems. Transient transfection-based reporter assays and gene silencing methods using siRNAs for LXRs showed that overexpression/ligand (GW3965) activation of LXRs/RXRs repressed GR-stimulated transactivation of certain glucocorticoid response element (GRE)-driven promoters in a gene-specific fashion. Activation of LXRs by GW3965 attenuated dexamethasone-stimulated elevation of circulating glucose in rats and suppressed dexamethasone-induced mRNA expression of hepatic glucose-6-phosphatase (G6Pase) in rats, mice and human hepatoma HepG2 cells. In microarray transcriptomic analysis of rat liver, GW3965 differentially regulated glucocorticoid-induced transcriptional activity of about 15% of endogenous glucocorticoid-responsive genes. Mechanistically, and in vitro chromatin immunoprecipitation assay, we found that LXR/RXR bound GREs and inhibited GR binding to these DNA sequences in a gene-specific fashion. These novel results were further confirmed in in vivo binding assays, and in gel mobility shift assays, where recombinant LXR/RXR proteins were used to examine their interaction with classic or G6Pase GREs. We propose that administration of LXR agonists may be beneficial in glucocorticoid treatment- or stress-associated dysmetabolic states by directly attenuating the transcriptional activity of the GR on glucose and/or lipid metabolism.

Publication Title

Liver x receptors regulate the transcriptional activity of the glucocorticoid receptor: implications for the carbohydrate metabolism.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE22647
Adenosine 5 monophosphate-activated protein kinase regulates metabolic actions of glucocorticoids by phosphorylating the glucocorticoid receptor through p38 mitogen-activated protein kinase.
  • organism-icon Rattus norvegicus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Glucocorticoids play central roles in the regulation of energy metabolism by shifting it toward catabolism, while AMPK is the master regulator of energy homeostasis, sensing energy depletion and stimulating pathways of increasing fuel uptake and saving on peripheral supplies. We showed here that AMPK regulates glucocorticoid actions on carbohydrate metabolism by targeting the glucocorticoid receptor (GR) and modifying transcription of glucocorticoid-responsive genes in a tissue- and promoter-specific fashion. Activation of AMPK in rats reversed glucocorticoid-induced hepatic steatosis and suppressed glucocorticoid-mediated stimulation of glucose metabolism. Transcriptomic analysis in the liver suggested marked overlaps between the AMPK and glucocorticoid signaling pathways directed mostly from AMPK to glucocorticoid actions. AMPK accomplishes this by phosphorylating serine 211 of the human GR indirectly through phosphorylation and consequent activation of p38 MAPK and by altering attraction of transcriptional coregulators to DNA-bound GR. In human peripheral mononuclear cells, AMPK mRNA expression positively correlated with that of glucocorticoid-responsive GILZ, which correlated also positively with the body mass index of subjects. These results indicate that the AMPK-mediated energy control system modulates glucocorticoid action at target tissues. Since increased action of glucocorticoids is associated with development of metabolic disorders, activation of AMPK could be a promising target for developing pharmacologic interventions to these pathologies.

Publication Title

AMPK regulates metabolic actions of glucocorticoids by phosphorylating the glucocorticoid receptor through p38 MAPK.

Sample Metadata Fields

Sex

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact