refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 95 results
Sort by

Filters

Technology

Platform

accession-icon E-ATMX-32
Transcription profiling of SALK_084897 or SAIL_303_D08 Arabidopsis plants grown under normal conditions or with moderate light and drough treatment applied
  • organism-icon Arabidopsis thaliana
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

4 week old Arabidopsis plants, of ecotype Columbia, SALK_084897 or SAIL_303_D08 were either grown under normal conditions or grown under normal conditions for before having a moderate light and drought treatment applied. Light and drought treatment was applied by withholding water for 5 days prior to transfer to 300 uE m-2 s-1 light conditions. Samples were collected after 3 days of treatment or for the same age plants grown under normal conditions.

Publication Title

The absence of ALTERNATIVE OXIDASE1a in Arabidopsis results in acute sensitivity to combined light and drought stress.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE66649
Multi-platform assessment of transcriptional profiling technologies utilizing a precise probe mapping methodology
  • organism-icon Homo sapiens
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20), Agilent-014850 Whole Human Genome Microarray 4x44K G4112F (Feature Number version), Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Multi-platform assessment of transcriptional profiling technologies utilizing a precise probe mapping methodology.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE66628
Multi-platform assessment of transcriptional profiling technologies utilizing a precise probe mapping methodology (Affymetrix_Gene1.0) (exon analysis)
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge IconAgilent-014850 Whole Human Genome Microarray 4x44K G4112F (Feature Number version), Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

We present a more extensive and yet precise assessment to elucidate differences and similarities in performance at numerous aspects including signal range, sensitivity to fold-change, and fidelity with TaqMan qRT-PCR. There were three levels of data examined: entire data sets, data derived from gene name annotation oriented subset of 15442 RefSeq genes, and data derived from transcript pattern defined subset of 7034 RefSeq genes. Our results showed a fair degree of overall correlation between all 6 platforms evaluated; but, to varying degrees, two RNA-seq protocols outperformed three of the microarray platforms in most categories. Notably, a fourth microarray platform, Agilent, was comparable, or marginally superior, to the RNA-seq protocols within these same assessments. Furthermore, 3 platforms (Agilent and two RNA-seq methods) demonstrated over 80% concordance with the gold standard TaqMan assay in terms of fold-change accuracy. Our study suggests that the use of transcript patterns can enhance a number of the observed cross-platform correlations, indicating a potential usefulness for similar evaluations.

Publication Title

Multi-platform assessment of transcriptional profiling technologies utilizing a precise probe mapping methodology.

Sample Metadata Fields

Disease

View Samples
accession-icon GSE66648
Multi-platform assessment of transcriptional profiling technologies utilizing a precise probe mapping methodology (Affymetrix_HTA2.0)
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconAgilent-014850 Whole Human Genome Microarray 4x44K G4112F (Feature Number version), Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

We present a more extensive and yet precise assessment to elucidate differences and similarities in performance at numerous aspects including signal range, sensitivity to fold-change, and fidelity with TaqMan qRT-PCR. There were three levels of data examined: entire data sets, data derived from gene name annotation oriented subset of 15442 RefSeq genes, and data derived from transcript pattern defined subset of 7034 RefSeq genes. Our results showed a fair degree of overall correlation between all 6 platforms evaluated; but, to varying degrees, two RNA-seq protocols outperformed three of the microarray platforms in most categories. Notably, a fourth microarray platform, Agilent, was comparable, or marginally superior, to the RNA-seq protocols within these same assessments. Furthermore, 3 platforms (Agilent and two RNA-seq methods) demonstrated over 80% concordance with the gold standard TaqMan assay in terms of fold-change accuracy. Our study suggests that the use of transcript patterns can enhance a number of the observed cross-platform correlations, indicating a potential usefulness for similar evaluations.

Publication Title

Multi-platform assessment of transcriptional profiling technologies utilizing a precise probe mapping methodology.

Sample Metadata Fields

Disease

View Samples
accession-icon SRP055917
Multi-platform assessment of transcriptional profiling technologies utilizing a precise probe mapping methodology (RNA-seq_ClonTech)
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

We present a more extensive and yet precise assessment to elucidate differences and similarities in performance at numerous aspects including signal range, sensitivity to fold-change, and fidelity with TaqMan qRT-PCR. There were three levels of data examined: entire data sets, data derived from gene name annotation oriented subset of 15442 RefSeq genes, and data derived from transcript pattern defined subset of 7034 RefSeq genes. Our results showed a fair degree of overall correlation between all 6 platforms evaluated; but, to varying degrees, two RNA-seq protocols outperformed three of the microarray platforms in most categories. Notably, a fourth microarray platform, Agilent, was comparable, or marginally superior, to the RNA-seq protocols within these same assessments. Furthermore, 3 platforms (Agilent and two RNA-seq methods) demonstrated over 80% concordance with the gold standard TaqMan assay in terms of fold-change accuracy. Our study suggests that the use of transcript patterns can enhance a number of the observed cross-platform correlations, indicating a potential usefulness for similar evaluations. Overall design: The study assessed differences and similarities in performance at numerous aspects including signal range, sensitivity to fold-change, and fidelity with TaqMan qRT-PCR. There were three levels of data examined: entire data sets, data derived from gene name annotation oriented subset of 15442 RefSeq genes, and data derived from transcript pattern defined subset of 7034 RefSeq genes.

Publication Title

Multi-platform assessment of transcriptional profiling technologies utilizing a precise probe mapping methodology.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP055916
Multi-platform assessment of transcriptional profiling technologies utilizing a precise probe mapping methodology (RNA-seq_RiboZero)
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

We present a more extensive and yet precise assessment to elucidate differences and similarities in performance at numerous aspects including signal range, sensitivity to fold-change, and fidelity with TaqMan qRT-PCR. There were three levels of data examined: entire data sets, data derived from gene name annotation oriented subset of 15442 RefSeq genes, and data derived from transcript pattern defined subset of 7034 RefSeq genes. Our results showed a fair degree of overall correlation between all 6 platforms evaluated; but, to varying degrees, two RNA-seq protocols outperformed three of the microarray platforms in most categories. Notably, a fourth microarray platform, Agilent, was comparable, or marginally superior, to the RNA-seq protocols within these same assessments. Furthermore, 3 platforms (Agilent and two RNA-seq methods) demonstrated over 80% concordance with the gold standard TaqMan assay in terms of fold-change accuracy. Our study suggests that the use of transcript patterns can enhance a number of the observed cross-platform correlations, indicating a potential usefulness for similar evaluations. Overall design: The study assessed differences and similarities in performance at numerous aspects including signal range, sensitivity to fold-change, and fidelity with TaqMan qRT-PCR. There were three levels of data examined: entire data sets, data derived from gene name annotation oriented subset of 15442 RefSeq genes, and data derived from transcript pattern defined subset of 7034 RefSeq genes.

Publication Title

Multi-platform assessment of transcriptional profiling technologies utilizing a precise probe mapping methodology.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP151425
RNA-Seq of newly diagnosed patients in the PADIMAC study leads to a bortezomib/lenalidomide decision signature
  • organism-icon Homo sapiens
  • sample-icon 42 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Improving outcomes in multiple myeloma will not only involve development of new therapies, but better use of existing treatments. We performed RNA sequencing (RNA-Seq) on samples from newly diagnosed patients enrolled into the phase II PADIMAC study. Using an empirical Bayes approach and synthetic annealing, we developed and trained a seven-gene signature to predict treatment outcome. We tested the signature on independent cohorts treated with bortezomib- and lenalidomide-based therapies. The signature was capable of distinguishing which patients would respond better to which regimen. In the CoMMpass dataset, patients who were treated correctly according to the signature had a better progression-free and overall survival than those who were not. Indeed, the outcome for these correctly treated patients was non-inferior to those treated with combined bortezomib, lenalidomide, and dexamethasone (VRD). PADIMAC: Bortezomib, Adriamycin and Dexamethasone (PAD) therapy for previously untreated patients with multiple myeloma: Impact of minimal residual disease (MRD) in patients with deferred ASCT (autologous stem cell transplant) Overall design: RNA-Seq data from 44 patients enrolled into the PADIMAC study who provided RNA with an RNA Integrity score of 6 or greater. Thirteen out of forty-four patients had at least a very good partial remission sustained for at least a year without progression and were labelled as "bortezomib-good".

Publication Title

RNA-seq of newly diagnosed patients in the PADIMAC study leads to a bortezomib/lenalidomide decision signature.

Sample Metadata Fields

Age, Specimen part, Subject

View Samples
accession-icon SRP089712
RNA Sequencing of mouse Purkinje cells across postnatal development
  • organism-icon Mus musculus
  • sample-icon 86 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We analyzed Purkinje cell transcriptome dynamics in the developing mouse cerebellum during the first three postnatal weeks, a key developmental period equivalent to the third trimester in human cerebellar development. Our study represents the first detailed analysis of developmental Purkinje cell transcriptomes and provides a valuable dataset for gene network analyses and biological questions on genes implicated in cerebellar and Purkinje cell development. Overall design: Laser capture microdissection was employed to obtain a highly enriched population of cerebellar Purkinje cells. Deep sequencing was performed on RNA isolated from 1000 Purkinje cells at five developmental timepoints (postnatal days P0, P4, P8, P14 and P21) in triplicate.

Publication Title

A gene expression signature in developing Purkinje cells predicts autism and intellectual disability co-morbidity status.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE20347
Analysis of gene expression in esophageal squamous cell carcinoma (ESCC)
  • organism-icon Homo sapiens
  • sample-icon 33 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

To characterize gene expression in esophageal squamous cell carcinoma, we examined gene expression in tumor and matched normal adjacent tissue from 17 ESCC patients from a high-risk region of China.

Publication Title

Genome wide analysis of DNA copy number neutral loss of heterozygosity (CNNLOH) and its relation to gene expression in esophageal squamous cell carcinoma.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP155937
Oxygen Controls Metabolic Flux and Influences Global Acetylation and Methylation in Human Pluripotent Stem Cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Purpose: The goals of this study are to compare the effects of 5% and 20% oxygen culture on human embryonic stem cells, inlcuding the impact on their transcriptomes. Overall design: mRNA profiles of two human embryonic stem cell lines (MEL1 and MEL2) cultured long term at 5% and 20% oxygen.

Publication Title

Oxygen Regulates Human Pluripotent Stem Cell Metabolic Flux.

Sample Metadata Fields

Cell line, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact