refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 34 results
Sort by

Filters

Technology

Platform

accession-icon GSE73464
Diagnosis of Kawasaki Disease in children using host RNA expression
  • organism-icon Homo sapiens
  • sample-icon 839 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip, Illumina HumanHT-12 V3.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Diagnosis of Kawasaki Disease Using a Minimal Whole-Blood Gene Expression Signature.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE73461
Diagnosis of Kawasaki Disease in children using host RNA expression [Discovery_Dataset]
  • organism-icon Homo sapiens
  • sample-icon 459 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip, Illumina HumanHT-12 V4.0 expression beadchip

Description

Genome-wide analysis of transcriptional profiles in children <17 years of age with inflammatory diseases, bacterial or viral infections or with clinical features suggestive of infection.

Publication Title

Diagnosis of Kawasaki Disease Using a Minimal Whole-Blood Gene Expression Signature.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE73463
Diagnosis of Kawasaki Disease in children using host RNA expression [Validation_HT12V4_Dataset]
  • organism-icon Homo sapiens
  • sample-icon 233 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip, Illumina HumanHT-12 V4.0 expression beadchip

Description

Genome-wide analysis of transcriptional profiles in children <17 years of age with inflammatory diseases, bacterial or viral infections or with clinical features suggestive of infection.

Publication Title

Diagnosis of Kawasaki Disease Using a Minimal Whole-Blood Gene Expression Signature.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE73462
Diagnosis of Kawasaki Disease in children using host RNA expression [Validation_HT12V3_Dataset]
  • organism-icon Homo sapiens
  • sample-icon 147 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

Genome-wide analysis of transcriptional profiles in children <17 years of age with inflammatory diseases, bacterial or viral infections or with clinical features suggestive of infection.

Publication Title

Diagnosis of Kawasaki Disease Using a Minimal Whole-Blood Gene Expression Signature.

Sample Metadata Fields

Sex

View Samples
accession-icon SRP042647
Transcriptome of UV treated XPD mutant cells (Homo sapiens)
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

Specific mutations in the XPD subunit of transcription factor IIH result in combined xeroderma pigmentosum (XP)/Cockayne syndrome (CS), a severe DNA repair disorder characterized at the cellular level by a transcriptional arrest following UV irradiation. This transcriptional arrest has always been thought to be the result of faulty transcription-coupled repair. In the present study, we investigate the transcriptional dysregulation that follows UV irradiation in XP-D/CS compared with “pure” XP-D cells or WT cells. We also study how this process is affected by the inhibition of the histone deacetylase Sirt1.

Publication Title

Sirt1 suppresses RNA synthesis after UV irradiation in combined xeroderma pigmentosum group D/Cockayne syndrome (XP-D/CS) cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE89963
RNA profiling of mouse mammary tumor cell redirection in vitro model.
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

We have developed an in vitro system of cancer cell redirection that employs the 1:50 ratio of cancer cells to normal cells. Using our in vitro system of cancer cell redirection we investigated the genetic profiles of erbB2-overexpressing mammary tumor-derived cells as they undergo the redirection phenomenon.

Publication Title

RNA Expression Profiling Reveals Differentially Regulated Growth Factor and Receptor Expression in Redirected Cancer Cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE57923
Regulatory interplay of Cockayne syndrome B ATPase and stress-response gene ATF3 following genotoxic stress
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Gene expression profile in CS1AN deficient and CSBwt restored cell lines after 24 hours of UV or alphe-amanitin treatment (only for restored). The comaprison of expression profile between 0 and 24 hours revealed

Publication Title

Regulatory interplay of Cockayne syndrome B ATPase and stress-response gene ATF3 following genotoxic stress.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE40883
Gene expression before or 3 hours after t-RA treatment in HeLa cells expressing an shRNA control or shRNA against PARG
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The goal of this experiment was to compare gene expression after t-RA treatment in cells with or without the presence of the PolyADP ribose Glycohydrolase protein (PARG)

Publication Title

Poly (ADP-ribose) glycohydrolase regulates retinoic acid receptor-mediated gene expression.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE34800
A new subtype of bone sarcoma defined by BCOR-CCNB3 gene fusion
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The identification of subtype-specific translocations has revolutionized diagnostics of sarcoma and provided new insight into oncogenesis. We used RNA-Seq to investigate samples diagnosed as small round cell tumors of bone, possibly Ewing sarcoma, but lacking the canonical EWSR1-ETS translocation. A new fusion was observed between the BCL6 co-repressor (BCOR) and the testis specific cyclin B3 (CCNB3) genes on chromosome X. RNA-Seq results were confirmed by RT-PCR and cloning the tumor-specific genomic translocation breakpoints. 24 BCOR-CCNB3-positive tumors were identified among a series of 594 sarcomas. Gene profiling experiments indicate that BCOR-CCNB3-positive cases are biologically distinct from other sarcomas, particularly Ewings sarcoma. Finally, we show that CCNB3 immunohistochemistry is a powerful diagnostic marker for this group of sarcoma and that over-expression of BCOR-CCNB3 or of a truncated CCNB3 activates S-phase in NIH3T3 cells. Thus the intrachromosomal X fusion described here represents a new subtype of bone sarcoma caused by a novel gene fusion mechanism.

Publication Title

A new subtype of bone sarcoma defined by BCOR-CCNB3 gene fusion.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE23980
Expression data from human soft tissue sarcomas with complex genomics
  • organism-icon Homo sapiens
  • sample-icon 164 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Differentially expressed genes between 171 human soft tissue sarcomas with complex genomics

Publication Title

From PTEN loss of expression to RICTOR role in smooth muscle differentiation: complex involvement of the mTOR pathway in leiomyosarcomas and pleomorphic sarcomas.

Sample Metadata Fields

Sex, Specimen part, Cell line

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact