refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 549 results
Sort by

Filters

Technology

Platform

accession-icon GSE37563
In vivo gene expression data from wild type and CTLA-4 KO 5C.C7 T cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

CTLA-4 is thought to inhibit effector T cells both intrinsically, by competing with CD28 for B7 ligands, and extrinsically, through the action of regulatory T cells. We studied in vivo responses of normal and CTLA-4-deficient antigen-specific murine effector CD4+ T cells. In order to do these studies in a physiological model of immunity to foreign antigen, we transferred small numbers of congenically marked RAG2-deficient 5C.C7 T cells with either a normal or knockout allele of CTLA-4 into normal syngeneic B10.A recipient mice. The T cells were then activated by immunization with MCC peptide and LPS. To look for transcriptional signatures of negative regulation of T cell responses by CTLA-4, we used microarray analysis to compare transcripts in wild type and CTLA-4 KO 5C.C7 T cells four days after immunization. This is the first instance in which differences are observed in extent of accumulation of wild type and CTLA-4 KO 5C.C7 T cells.

Publication Title

Cutting edge: CTLA-4 on effector T cells inhibits in trans.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP200599
Identification of genes with enriched expression in early developing mouse cone photoreceptors
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

A LHX4 transgenic reporter line with high specificity for developing mouse cone photoreceptors was identified and used to purify early stage cone photoreceptors for profiling by single cell RNA sequencing. Overall design: Collection of FACS-sorted LHX4::GFP+ E14.5 early cones and LHX4::GFP- retinal cells for further analysis.

Publication Title

Identification of Genes With Enriched Expression in Early Developing Mouse Cone Photoreceptors.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE77239
Expression data from young and senescent HCAECs treated with proton pump inhibitors (omeprazole and lansoprazole)
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Proton pump inhibitors (PPIs) are among the most frequently prescribed drugs, especially in older people. Although these drugs are usually considered safe, recent evidence suggests that high dose and/or long term use of PPIs may have several detrimental effects, including increased risk of adverse cardiovascular events. The impact of PPI in the aging host environment still need to be characterized. Aged tissues, including vascular tissues, accumulate senescent cells that can communicate with their environment by secreting a myriad of cytokines and growth factors. Human coronary artery endothelial cells (HCAECs) provide an excellent model system to study in vitro most aspects of cardiovascular function and disease related to cellular senescence. The purpose of this study is thus to investigate the in vitro effects of two well-known PPIs (Omeprazole and Lansoprazole) on endothelial gene expression in senescent e non-senescent HCAECs.

Publication Title

Different transcriptional profiling between senescent and non-senescent human coronary artery endothelial cells (HCAECs) by Omeprazole and Lansoprazole treatment.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE80968
Genome-wide analysis of SNB19 and SHSY5Y cells with single or double knockdown of SDHD and CDKN1C or SLC22A18
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Analysis of knockdown of SDHD with or without knockdown of CDKN1C or SLC22A18 at gene expression level.

Publication Title

Parent-of-origin tumourigenesis is mediated by an essential imprinted modifier in SDHD-linked paragangliomas: SLC22A18 and CDKN1C are candidate tumour modifiers.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE68954
caArray_golub-00392: Gefitinib (Iressa) induces myeloid differentiation of acute myeloid leukemia
  • organism-icon Homo sapiens
  • sample-icon 69 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Cure rates for patients with acute myeloid leukemia (AML) remain low despite ever-increasing dose intensity of cytotoxic therapy. In an effort to identify novel approaches to AML therapy, we recently reported a new method of chemical screening based on the modulation of a gene expression signature of interest. We applied this approach to the discovery of AML-differentiation-promoting compounds. Among the compounds inducing neutrophilic differentiation was DAPH1 (4,5-dianilinophthalimide), previously reported to inhibit epidermal growth factor receptor (EGFR) kinase activity. Here we report that the Food and Drug Administration (FDA)-approved EGFR inhibitor gefitinib similarly promotes the differentiation of AML cell lines and primary patient-derived AML blasts in vitro. Gefitinib induced differentiation based on morphologic assessment, nitro-blue tetrazolium reduction, cell-surface markers, genome-wide patterns of gene expression, and inhibition of proliferation at clinically achievable doses. Importantly, EGFR expression was not detected in AML cells, indicating that gefitinib functions through a previously unrecognized EGFR-independent mechanism. These studies indicate that clinical trials testing the efficacy of gefitinib in patients with AML are warranted.

Publication Title

Gefitinib induces myeloid differentiation of acute myeloid leukemia.

Sample Metadata Fields

Disease, Disease stage, Cell line

View Samples
accession-icon SRP076677
Pericyte-like cells generated from human pluripotent stem cells support hematopoietic stem and progenitors ex vivo
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Various mesenchymal cell types have been identified as critical components of the hematopoietic stem/progenitor cell (HSPC) niche. Although several groups have described the generation of mesenchyme from human pluripotent stem cells (hPSC), the capacity of such cells to support hematopoiesis has not been reported. Here we have demonstrated that distinct mesenchymal subpopulations co-emerge from mesoderm during hPSC differentiation. Despite co-expression of common mesenchymal markers (CD73, CD105, CD90, PDGFRß), a subset of cells defined as CD146++CD140alow supported functional HSPC ex vivo while CD146­-CD140a+ cells drove differentiation. The CD146++ subset expressed genes associated with the HSPC niche and high levels of the Wnt inhibitors. HSPC support was contact-dependent and was mediated in part through JAG1 expression. Molecular profiling revealed remarkable transcriptional similarity between hPSC-derived CD146++ and primary human CD146++ perivascular cells. The derivation of diverse pools of mesenchymal populations from hPSC opens potential avenues to model their developmental and functional differences and to improve cell-based therapeutics from hPSC. Overall design: Our goal was to analyze and compare transcriptome of human pluripoten stem cell-derived mesenchyme (CD146++ and CD146-) with primary human lipoaspirate tissue-derived pericyte (CD146+) and CD146- mesenchymal populations.

Publication Title

Transcriptionally and Functionally Distinct Mesenchymal Subpopulations Are Generated from Human Pluripotent Stem Cells.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE118907
Esrrb extinction triggers dismantling of nave pluripotency and marks commitment to differentiation.
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Esrrb extinction triggers dismantling of naïve pluripotency and marks commitment to differentiation.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE68893
Expression data from 5CC7 T cells stimulated in vivo
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

We used microarrays to determine how the quality and quantity of peptide-MHC impact TCR-induced gene expression in vivo.

Publication Title

Distinct influences of peptide-MHC quality and quantity on in vivo T-cell responses.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE118906
Esrrb extinction triggers dismantling of nave pluripotency and marks commitment to differentiation [Microarray]
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Self-renewal of embryonic stem cells (ESCs) cultured in serum-LIF is incomplete with some cells initiating differentiation. While this is reflected in heterogeneous expression of naive pluripotency transcription factors (TFs), the link between TF heterogeneity and differentiation is not fully understood. Here we purify ESCs with distinct TF expression levels from serum-LIF cultures to uncover early events during commitment from nave pluripotency. ESCs carrying fluorescent Nanog and Esrrb reporters show Esrrb downregulation only in NANOGlow cells. Independent Esrrb reporter lines demonstrate that ESRRBnegative ESCs cannot effectively self-renew. Upon ESRRB loss, pre-implantation pluripotency gene expression collapses. ChIP-Seq identifies different regulatory element classes that bind both OCT4 and NANOG in ESRRBhigh cells. Class I elements lose NANOG and OCT4 binding in ESRRBnegative ESCs and associate with genes expressed preferentially in nave ESCs. In contrast, class II elements retain OCT4 but not NANOG binding in ESRRBnegative cells and associate with more broadly expressed genes. Therefore, mechanistic differences in TF function act cumulatively to restrict potency during exit from nave pluripotency.

Publication Title

Esrrb extinction triggers dismantling of naïve pluripotency and marks commitment to differentiation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP070059
Genetic Tagging During Human Mesoderm Differentiation Reveals Tripotent Lateral Plate Mesodermal Progenitors
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Although clonal studies of lineage potential have been extensively applied to organ specific stem and progenitor cells, much less is known about the clonal origins of lineages formed from the germ layers in early embryogenesis. We applied lentiviral tagging followed by vector integration site analysis (VISA) with high-throughput sequencing to investigate the ontogeny of the hematopoietic, endothelial and mesenchymal lineages as they emerge from human embryonic mesoderm. In contrast to studies that have used VISA to track differentiation of self-renewing stem cell clones that amplify significantly over time, we focused on a population of progenitor clones with limited self-renewal capability. Our analyses uncovered the critical influence of sampling on the interpretation of lentiviral tag sharing, particularly among complex populations with minimal clonal duplication. By applying a quantitative framework to estimate the degree of undersampling we revealed the existence of tripotent mesodermal progenitors derived from pluripotent stem cells, and the subsequent bifurcation of their differentiation into exclusively bipotent endothelial/hematopoietic or endothelial/mesenchymal progenitors. Overall design: Our goal was to analyze transcriptome changes of mesoderm commitment during human embyronic stem cells differentiation. RNA were extracted and sequenced from two populations, human embryonic stem cells (H1 line) and the human early mesodermal progenitors (hEMP) differentiated from H1.

Publication Title

Transcriptionally and Functionally Distinct Mesenchymal Subpopulations Are Generated from Human Pluripotent Stem Cells.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact