refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 549 results
Sort by

Filters

Technology

Platform

accession-icon GSE55372
Physiological and transcriptional responses of anaerobic chemostat cultures of Saccharomyces cerevisiae subjected to diurnal temperature cycles
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome S98 Array (ygs98)

Description

Diurnal temperature cycling is an intrinsic characteristic of many exposed microbial ecosystems. However, its influence on yeast physiology and transcriptome has not been studied in detail. In this study, 24-h sinoidal temperature cycles, oscillating between 12 and 30C, were imposed on anaerobic, glucose-limited chemostat cultures of Saccharomyces cerevisiae. After three diurnal temperature cycles (DTC), concentrations of glucose, and extracellular metabolites, as well as CO2-production rates showed regular, reproducible circadian rhytms. DTC also led to waves of transcriptional activation and repression, which involved one sixth of the yeast genome. A substantial fraction of these DTC-responsive genes appeared to primarily respond to changes in glucose concentration. Elimination of known glucose-responsive genes revealed overrepresentation of previously identified temperature-responsive genes as well as genes involved in cell cycle and de novo purine biosynthesis. Analyses of budding index and flow cytomery demonstrated that DTC led to a partial synchronization of the cell cycle of the yeast populations in the chemostat cultures, which was lost upon release from DTC. Comparison of DTC results with data from steady-state cultures showed that DTC was sufficiently slow to allow S. cerevisiae chemostat cultures to almost completely acclimatize their transcriptome and physiology at the DTC temperature maximum, and to approach acclimation at the DTC temperature minimum.

Publication Title

Physiological and transcriptional responses of anaerobic chemostat cultures of Saccharomyces cerevisiae subjected to diurnal temperature cycles.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon E-MEXP-2144
Transcription profiling by array of Arabidopsis distal leaves in response to wounding
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Systemic transcriptional responses in Arabidopsis thaliana distal leaves to wounding

Publication Title

The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon SRP097006
Distinct roles for matrix metalloproteinases 2 and 9 in hematopoietic stem cell emergence, migration and niche colonization
  • organism-icon Danio rerio
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

We report gene expression data for FACS sorted zebrafish mpeg1:mCherry + and mpx:EGFP + cells collected from whole embryos at 72 hours post fertilization (hpf). We also report gene expression data for the remaining, transgene negative, portion of these embryos. Overall design: ~1,000 mpeg1:mCherry+; mpx:EGFP+ transgenic embryos were homogenized, filtered, and sorted using FACS into PBS, collecting >50,000 cells for each of the three populations: mpeg1:mCherry+, mpx:EGFP+ and double negative (no double positive cells were collected as there was almost no overlap between mCherry and EGFP expression).

Publication Title

Distinct Roles for Matrix Metalloproteinases 2 and 9 in Embryonic Hematopoietic Stem Cell Emergence, Migration, and Niche Colonization.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP077667
Mouse model of RHOA G17V mutation in Peripheral T-Cell Lymphoma
  • organism-icon Mus musculus
  • sample-icon 21 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Angioimmunoblastic T-cell lymphoma (AITL) is an aggressive lymphoid tumor derived from malignant transformation of T follicular helper (Tfh) cells. Genetically, AITL is characterized by loss of function mutations in the Ten-Eleven Translocation 2 (TET2) epigenetic tumor suppressor and a highly recurrent mutation (p.Gly17Val, G17V) in the RHOA small GTPase gene Moreover, RHOA G17V expression in Tet2 deficient hematopoietic progenitors resulted in the specific development of lymphoid tumors resembling human AITL. Notably, inhibition of ICOS signaling impaired the growth of RHOA G17V-induced mouse lymphomas in vivo, thus providing a potential new rational approach for the treatment of AITL. Overall design: We analyzed mRNA expression profiles of primary tumor cells expressing Rhoa G17V or Rhoa wild type.

Publication Title

RHOA G17V Induces T Follicular Helper Cell Specification and Promotes Lymphomagenesis.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE12836
PDGF-B induces a homogeneous class of oligodendrogliomas from embryonic neural progenitors
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

We analyzed the generation of mouse gliomas following the overexpression of PDGF-B in embryonic neural progenitors. Comparison of our microarray data, with published gene expression data sets for many different murine neural cell types, revealed a closest relationship between our tumor cells and oligodendrocyte progenitor cells, confirming definitively that PDGF-B-induced gliomas are pure oligodendrogliomas.

Publication Title

PDGF-B induces a homogeneous class of oligodendrogliomas from embryonic neural progenitors.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE94359
Gene expression profiling of CD45+ leukocytes infiltrating the prostate of TRAMP and TRAMP-J18-/- (iNKT cell-deficient) mice
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.1 ST Array (mogene21st)

Description

To investigate the impact of the iNKT cells on the tumor-infiltrating leukocytes in TRAMP mouse prostate cancer.

Publication Title

Bimodal CD40/Fas-Dependent Crosstalk between iNKT Cells and Tumor-Associated Macrophages Impairs Prostate Cancer Progression.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon SRP044124
BCR-ABL1 promotes leukemia by converting p27 into a cytoplasmic oncoprotein
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer

Description

Coordinated BCR-ABL1 kinase-dependent and -independent mechanisms convert p27 from a nuclear tumor suppressor to a cytoplasmic oncogene. Persistence of oncogenic p27 functions despite effective inhibition of BCR-ABL1 may contribute to resistance to tyrosine kinase inhibitors. Overall design: BCR-ABL1 induced p27 versus knockout, controlling with Empty vector p27 versus knock out

Publication Title

BCR-ABL1 promotes leukemia by converting p27 into a cytoplasmic oncoprotein.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13733
Effects of DZNep and 5-Aza-CdR on gene expression in MCF7 cells
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIllumina HumanWG-6 v3.0 expression beadchip

Description

DNA methylation, histone modifications, and nucleosomal occupancy collaborate to cause silencing of tumor related genes in cancer. The development of drugs that target these processes is therefore important for cancer therapy. Inhibitors of DNA methylation and histone deacetylation have already been approved by the FDA for the treatment of hematologic malignancies. However, drugs that target the other mechanisms still need to be developed. Recently, 3-deazaneplanocin A (DZNep) was reported to selectively inhibit the trimethylation of lysine 27 on histone H3 (H3K27me3) and lysine 20 on histone H4 (H4K20me3) as well as re-activate silenced genes in cancer cells. This finding opens the door to pharmacological inhibition of histone methylation and we therefore wanted to further study the mechanism of action of 3-deazaneplanocin A in cancer cells. Western blot analysis showed that two other drugs, sinefungin and adenosine-dialdehyde (Adox), have similar effects on the trimethylation H3K27 as 3-deazaneplanocin A and that DZNep is not selective, but globally inhibits histone methylation. Intriguingly, chromatin immunoprecipitation of various histone modifications and microarray analysis show DZNep acts via a different pathway to 5-aza-2-deoxycytidine (5-azaCdR), a DNA methyltransferase inhibitor and gives us an interesting insight into how chromatin structure effects gene expression. We also determine the kinetics of gene activation in order to understand if the induced changes were somatically heritable. We have found that upon removal of DZNep, gene expression is reduced to its original state suggesting that there is a homeostatic mechanism which returns the histone modifications to their ground state after DZNep treatment. Not only do these studies show the strong need for further development of histone methylation inhibitors but also allow us to better understand how chromatin structure affects gene expression.

Publication Title

DZNep is a global histone methylation inhibitor that reactivates developmental genes not silenced by DNA methylation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE15200
Effects of DZNep and 5-Aza-CdR on gene expression in MCF7 cells after 72 h treatment
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina human-6 v2.0 expression beadchip

Description

DNA methylation, histone modifications, and nucleosomal occupancy collaborate to cause silencing of tumor related genes in cancer. The development of drugs that target these processes is therefore important for cancer therapy. Inhibitors of DNA methylation and histone deacetylation have already been approved by the FDA for the treatment of hematologic malignancies. However, drugs that target the other mechanisms still need to be developed. Recently, 3-deazaneplanocin A (DZNep) was reported to selectively inhibit the trimethylation of lysine 27 on histone H3 (H3K27me3) and lysine 20 on histone H4 (H4K20me3) as well as re-activate silenced genes in cancer cells. This finding opens the door to pharmacological inhibition of histone methylation and we therefore wanted to further study the mechanism of action of 3-deazaneplanocin A in cancer cells. Western blot analysis showed that two other drugs, sinefungin and adenosine-dialdehyde (Adox), have similar effects on the trimethylation H3K27 as 3-deazaneplanocin A and that DZNep is not selective, but globally inhibits histone methylation. Intriguingly, chromatin immunoprecipitation of various histone modifications and microarray analysis show DZNep acts via a different pathway to 5-aza-2-deoxycytidine (5-azaCdR), a DNA methyltransferase inhibitor and gives us an interesting insight into how chromatin structure effects gene expression. We also determine the kinetics of gene activation in order to understand if the induced changes were somatically heritable. We have found that upon removal of DZNep, gene expression is reduced to its original state suggesting that there is a homeostatic mechanism which returns the histone modifications to their ground state after DZNep treatment. Not only do these studies show the strong need for further development of histone methylation inhibitors but also allow us to better understand how chromatin structure affects gene expression.

Publication Title

DZNep is a global histone methylation inhibitor that reactivates developmental genes not silenced by DNA methylation.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE100248
SMAD4 impedes conversion of NK cells into ILC1-like cells by curtailing non-canonical TGFb signaling
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

SMAD4 impedes the conversion of NK cells into ILC1-like cells by curtailing non-canonical TGF-β signaling.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact