refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 81 results
Sort by

Filters

Technology

Platform

accession-icon GSE51869
Expression data from mesenchymal stromal cells isolated from the umbilical cord tissue (UCX) and cultivated in ATMP-compatible media
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Standardization of MSC manufacturing is urgently needed to facilitate comparison of clinical trial results. Here, we compare gene expression of MSC generated by the adaptation of a proprietary method for isolation and cultivation of a specific umbilical cord tissue-derived population of Mesenchymal Stromal Cells (MSCs)

Publication Title

Towards an advanced therapy medicinal product based on mesenchymal stromal cells isolated from the umbilical cord tissue: quality and safety data.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE55962
Systemic inflammatory response to smoking in chronic obstructive pulmonary disease: evidence of a gender effect
  • organism-icon Homo sapiens
  • sample-icon 106 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U219 Array (hgu219)

Description

We analyzed total leukocyte gene expression using Affymetrix microarrays from healthy smokers, COPD patients and non-smoking control subjects before and after exposure to acute cigarette smoke (smoking two cigarettes in 30 minutes).

Publication Title

Systemic inflammatory response to smoking in chronic obstructive pulmonary disease: evidence of a gender effect.

Sample Metadata Fields

Sex, Specimen part, Disease

View Samples
accession-icon GSE19302
Expression profile of the heat-inducible N-degron of Nab2 (nab2-td)
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

Gene expression in eukaryotes is an essential process that includes transcription, pre-RNA processing and RNA export. All these steps are coupled and normally, any failure in one step affects the other steps and could cause nuclear mRNA retention. One important player in this interface is the poly(A)-RNA binding protein Nab2, which regulates the poly(A)-tail length of mRNAs protecting their 3-ends from a second round of polyadenylation and facilitating their nucleo-cytoplasmic export. Interestingly, here we show that Nab2 has additional roles in mRNA transcription elongation, tRNA metabolism and rRNA export.

Publication Title

Nab2 functions in the metabolism of RNA driven by polymerases II and III.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE41756
Expression data from porcine cells infected with TGEV wild-type (rTGEV-wt) or mutant (rTGEV-delta7) coronaviruses
  • organism-icon Sus scrofa
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Porcine Genome Array (porcine)

Description

Innate immune response is the first line of antiviral defense resulting, in most cases, in pathogen clearance with minimal clinical consequences. Viruses have developed diverse strategies to evade innate immune response and to ensure their survival. Using transmissible gastroenteritis virus (TGEV) as a model, we previously reported that accessory gene 7 counteracts host antiviral response by its association with the catalytic subunit of protein phosphatase 1 (PP1c). A transcriptomic analysis was performed to further investigate the effect of gene 7 absence on the host cell.

Publication Title

Alphacoronavirus protein 7 modulates host innate immune response.

Sample Metadata Fields

Specimen part, Cell line, Time

View Samples
accession-icon GSE26303
Expression profile of nab2-1 mutant
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

Gene expression in eukaryotes is an essential process that includes transcription, pre-RNA processing and RNA export. All these steps are coupled and normally, any failure in one step affects the other steps and could cause nuclear mRNA retention. One important player in this interface is the poly(A)-RNA binding protein Nab2, which regulates the poly(A)-tail length of mRNAs protecting their 3-ends from a second round of polyadenylation and facilitating their nucleo-cytoplasmic export. Interestingly, here we show that Nab2 has additional roles in mRNA transcription elongation, tRNA metabolism and rRNA export.

Publication Title

Nab2 functions in the metabolism of RNA driven by polymerases II and III.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE39450
Coordinated activities of EZH2 and EZH1 are essential for neurogenesis
  • organism-icon Gallus gallus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Chicken Genome Array (chicken)

Description

Polycomb group proteins (PcG) are well known by their function in the regulation of developmental processes. PcG mediated regulation of genetic programs required for proper development are triggered by EZH2 H3K27 methyltransferase activity. EZH1 can partially substitute EZH2 activity. However, unlike EZH2, EZH1 is presence in differentiated and adult tissues suggesting additional biological functions. Here we show that EZH2 is predominantly expressed in neural stem cells being essential for neural stem cells self renewal and homeostasis. There, it controls the transcriptional state of cell cycle regulators, such as CIP1. But it is also necessary to regulate genes involved in surveillance and neuroepithelial polarity. In contrast, EZH1 expression is more abundant in differentiated cells within the spinal cord and its downregulation unables neural stem cells to differentiate. All together our data reveal a complementary but non-redundant role of EZH2 and EZH1 in neurogenesis.

Publication Title

EZH2 regulates neuroepithelium structure and neuroblast proliferation by repressing p21.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP158145
iNKT cells RNA-Seq (WT vs SFR KO)
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

RNA transcriptome difference between WT and SFR KO iNKT cells To understand how SLAM family receptors (SFRs) contribute to iNKT cell development, a mouse lacking all SFRs in addition to the ligand of 2B4, CD48, was generated, and the transcriptional profiles of thymic iNKT cells from wild-type and SFR KO mice were compared, using RNA sequencing. Overall design: Examine RNA expression in WT and SFR KO iNKT cells Thymocytes were isolated from WT and SFR KO mice, and iNKT cells were enriched by negative selection. Unwanted cells (CD11b+ CD11c+ Gr-1+ Ter-119+ CD19+ CD8a+ cells) were targeted for removal with biotinylated antibodies (BioLegend), streptavidin-coated magnetic particles (RapidSpheres) and EasySep magnet (STEMCELL), and followed by staining with mCD1d/PBS-57 and anti-TCR. Then, iNKT cells were sorted with BD FACSAria III (BD Biosciences), and total RNA was isolated from sorted cells according to the manufacturer's instructions using the RNeasy plus micro kit (Qiagen). RNA-Seq library preparation was performed using the Illumina TruSeq Stranded mRNA Kit, according to manufacturer's instructions, and sequenced with Illumina HiSeq 2000 Sequencer. Read quality was confirmed using FastQC v0.10.1 before alignment using TopHat v2.0.10 on the mouse GRCm38/mm10 genome.

Publication Title

SLAM receptors foster iNKT cell development by reducing TCR signal strength after positive selection.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP041507
Fine kinetic transcriptome analysis during jasmonate signaling
  • organism-icon Arabidopsis thaliana
  • sample-icon 72 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

To study the role of the plant hormone jasmonate in regulating stress-induced allocation of photosynthetic products between growth- and defense-related processes, we used RNA-sequencing to query the Arabidopsis transcriptome at high temporal resolution over 24 h after treatment with the bacterial toxin coronatine (COR), a high-affinity agonist of the JA receptor, or with a mock solution to account for diurnal changes in gene expression. These data establish a fine-scale view of the kinetics of jasmonate signaling, as well as of the diurnal patterns of gene expression.

Publication Title

Temporal Dynamics of Growth and Photosynthesis Suppression in Response to Jasmonate Signaling.

Sample Metadata Fields

Age, Specimen part, Treatment, Time

View Samples
accession-icon GSE17170
A systems genetics approach implicates USF1, FADS3 and other causal candidate genes for familial combined hyperlipidemia
  • organism-icon Homo sapiens
  • sample-icon 68 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Assessment of mRNA expression levels in fat biopsies from subcutaneous adipose tissue from unrelated individuals.

Publication Title

A systems genetics approach implicates USF1, FADS3, and other causal candidate genes for familial combined hyperlipidemia.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE83122
Functional screening implicates miR-371-3p and peroxiredoxin 6 in reversible tolerance to cancer drugs
  • organism-icon Homo sapiens
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Functional screening implicates miR-371-3p and peroxiredoxin 6 in reversible tolerance to cancer drugs.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact