refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 16 results
Sort by

Filters

Technology

Platform

accession-icon GSE47559
Ibf1 and Ibf2 are DNA-binding proteins required for insulator function in Drosophila
  • organism-icon Drosophila melanogaster
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Ibf1 and Ibf2 are novel CP190-interacting proteins required for insulator function.

Sample Metadata Fields

Disease, Cell line

View Samples
accession-icon GSE47557
Co-regulation analysis of CP190 and CG9740 [expression]
  • organism-icon Drosophila melanogaster
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Gene expression in S2 cells after CG9740 or CP190 RNAi

Publication Title

Ibf1 and Ibf2 are novel CP190-interacting proteins required for insulator function.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP087724
Transcriptome of diurnal wild-type neutrophils and neutrophils deficient in cxcr2, cxcr4 and arntl
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Our study aims to analyze time-dependent changes in neutrophil phenotype, compare them with included neutrophil-specific mutants, and indentify common signatures among the 5 groups Overall design: Blood neutrophils from wild-type and mutants were isolated based on Ly6G staining, then standard RNA extraction procedures were performed. Wild-type samples were extracted at ZT5 and ZT13, all other samples at ZT5.

Publication Title

A Neutrophil Timer Coordinates Immune Defense and Vascular Protection.

Sample Metadata Fields

Sex, Specimen part, Cell line, Subject

View Samples
accession-icon SRP114943
Transcriptome of neutrophils deficient in cxcr4 and arntl
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Our study aims to analyze time-dependent changes in neutrophil phenotype Overall design: Blood neutrophils were isolated based on Ly6G staining, then standard RNA extraction procedures were performed. This samples were extracted at ZT13.

Publication Title

A Neutrophil Timer Coordinates Immune Defense and Vascular Protection.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE23935
Gene responses to TGF-beta receptor inhibition in glioblastoma
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

TGF-beta has an oncogenic response in glioblastoma and it is considered to be a therapeutic target. We evaluated the effect of TGF-beta inhibition in glioblastoma.

Publication Title

TGF-β Receptor Inhibitors Target the CD44(high)/Id1(high) Glioma-Initiating Cell Population in Human Glioblastoma.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE49176
Gene expressional comparison of in vitro adipocyte models vs. in vivo eWAT
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Comparison of gene expression level of 3T3-L1, PMEF and ES cell derived adipocytes to eWAT samples.

Publication Title

Highly efficient differentiation of embryonic stem cells into adipocytes by ascorbic acid.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP044099
The contribution of cohesin-SA1 to chromatin architecture and gene expression in two murine tissues
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon

Description

Cohesin, which consists of SMC1, SMC3, Rad21 and either SA1 or SA2, topologically embraces the chromatin fibers to hold sister chromatids together and to stabilize chromatin loops. Increasing evidence indicates that these loops are the organizing principle of higher-order chromatin architecture, which in turn is critical for gene expression. To determine how cohesin contributes to the establishment of tissue-specific transcriptional programs, we compared genome-wide cohesin distribution, gene expression and chromatin architecture in cerebral cortex and pancreas from adult mice. More than one third of cohesin binding sites differ between the two tissues and these are enriched at the regulatory regions of tissue-specific genes. Cohesin colocalizes extensively with the CCCTC-binding factor (CTCF). Cohesin/CTCF sites at active enhancers and promoters contain, at least, cohesin-SA1 whereas either cohesin-SA1 or cohesin-SA2 are present at active promoters independently of CTCF. Analyses of chromatin contacts at the Protocadherin gene cluster and the Regenerating islet-derived (Reg) gene cluster, mostly expressed in brain and pancreas respectively, revealed remarkable differences in the architecture of these loci in the two tissues that correlate with the presence of cohesin. Moreover, we found decreased binding of cohesin and reduced transcription of the Reg genes in the pancreas of SA1 heterozygous mice. Given that Reg proteins are involved in the control of inflammation in pancreas, such reduction may contribute to the increased incidence of pancreatic cancer reported in these animals. Overall design: Examination of the relationship between gene expression, genome wide cohesin distribution and chromatin structure

Publication Title

The contribution of cohesin-SA1 to gene expression and chromatin architecture in two murine tissues.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE26334
Expression data from LoVo colon cancer lines +/- constitutive LIN28B expression
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

We sought to elucidate the molecular mechanisms whereby LIN28B functions by comparing the gene expression profile of cells constitutively expressing LIN28B to empty vector controls.

Publication Title

LIN28B promotes colon cancer progression and metastasis.

Sample Metadata Fields

Disease, Cell line

View Samples
accession-icon E-MTAB-375
Transcription profiling by array of Arabidopsis after exposure to different temperatures and light levels
  • organism-icon Arabidopsis thaliana
  • sample-icon 175 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

High-density kinetic analysis of the metabolomic and transcriptomic response of Arabidopsis to temperature and light

Publication Title

High-density kinetic analysis of the metabolomic and transcriptomic response of Arabidopsis to eight environmental conditions.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE25414
Expression data from human blood samples
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Genetic factors contribute to the development of ischemic stroke but their identity remains largely unknown. We tested the association with ischemic stroke of 210 single nucleotide polymorphisms (SNPs) associated with pathways functionally related to stroke. We observed an association between the rs7956957 SNP in LRP1 and next performed microarrays analysis in healthy individuals to investigate possible associations of LRP genotypes with the expression of other genes.

Publication Title

Brain perihematoma genomic profile following spontaneous human intracerebral hemorrhage.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact