refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 58 results
Sort by

Filters

Technology

Platform

accession-icon GSE29929
The eIF2 kinase PERK and the integrated stress response facilitate activation of ATF6 during endoplasmic reticulum stress
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Disruptions of the endoplasmic reticulum (ER) that perturb protein folding cause ER stress and elicit an unfolded protein response (UPR) that involves translational and transcriptional changes in gene expression aimed at expanding the ER processing capacity and alleviating cellular injury. Three ER stress sensors PERK, ATF6, and IRE1 implement the UPR. PERK phosphorylation of eIF2 during ER stress represses protein synthesis, which prevents further influx of ER client proteins, along with preferential translation of ATF4, a transcription activator of the integrated stress response. In this study we show that the PERK/eIF2~P/ATF4 pathway is required not only for translational control, but also activation of ATF6 and its target genes. The PERK pathway facilitates both the synthesis of ATF6 and trafficking of ATF6 from the ER to the Golgi for intramembrane proteolysis and activation of ATF6. As a consequence, liver-specific depletion of PERK significantly reduces both the translational and transcriptional phases of the UPR, leading to reduced protein chaperone expression, disruptions of lipid metabolism, and enhanced apoptosis. These findings show that the regulatory networks of the UPR are fully integrated, and helps explain the diverse pathologies associated with loss of PERK.

Publication Title

The eIF2 kinase PERK and the integrated stress response facilitate activation of ATF6 during endoplasmic reticulum stress.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon SRP130955
Response of HEK293 Freestyle cells to 36 h of culture in Zn(II)-depleted Freestyle medium
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We describe the preparation, evaluation, and application of an S100A12 protein-conjugated solid support, hereafter the “A12-resin,” that can remove 99% of Zn(II) from complex biological solutions without significantly perturbing the concentrations of other metal ions. The A12-resin can be applied to selectively deplete Zn(II) from diverse tissue culture media and from other biological fluids including human sera. To further demonstrate the utility of this approach, we investigated metabolic, transcriptomic, and metallomic responses of HEK293T cells cultured in medium depleted of Zn(II) using S100A12. Our data indicate that dividing cells can maintain a constant pool of free Zn(II), even under conditions of severe Zn(II) deprivation. We expect that the A12-resin will facilitate interrogation of disrupted Zn(II) homeostasis in biological settings, uncovering novel roles for Zn(II) in biology. Overall design: Defining the response of a cell line to Zn(II) starvation

Publication Title

A Method for Selective Depletion of Zn(II) Ions from Complex Biological Media and Evaluation of Cellular Consequences of Zn(II) Deficiency.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP072417
NextGen Consortium: GENESiPS Study: Identifying the Gene Networks of Insulin Resistance
  • organism-icon Homo sapiens
  • sample-icon 317 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

RNA-seq transcriptome profiling of human induced pluripotent stem cells to characterize gene expression variation across individuals and within multiple iPSC lines from the same individual Overall design: Donor erythroblast or activated T-cells were reprogrammed with a Sendai viral vector coding for reprogramming factors. IPSC lines were propagated for ~9 passages before RNA sequencing

Publication Title

Analysis of Transcriptional Variability in a Large Human iPSC Library Reveals Genetic and Non-genetic Determinants of Heterogeneity.

Sample Metadata Fields

Sex, Age, Race, Subject

View Samples
accession-icon GSE31369
Expression profiling of rpb1-12XWTCTD and rpb1-12XS2ACTD fission yeast strains.
  • organism-icon Schizosaccharomyces pombe
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

In fission yeast, the nuclear-localized Lsk1p-Lsc1p-Lsg1p cyclin dependent kinase complex is required for the reliable execution of cytokinesis and is also required for Ser-2 phosphorylation RNA pol II carboxy terminal domain.

Publication Title

Global gene expression analysis of fission yeast mutants impaired in Ser-2 phosphorylation of the RNA pol II carboxy terminal domain.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE145781
Whole spleen transcriptome during acute phase of infection in a virulent Plasmodium chabaudi chabaudi CB infection
  • organism-icon Mus musculus
  • sample-icon 32 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Analysis of spleen samples taken throughout the acute phase of infection from mice infected with virulent P. chabaudi CB strain

Publication Title

Transcriptome analysis of blood and spleen in virulent and avirulent mouse malaria infection.

Sample Metadata Fields

Sex, Specimen part, Time

View Samples
accession-icon GSE145634
Rodent malaria parasite RNA does not affect mouse BeadChip results
  • organism-icon Mus musculus, Plasmodium chabaudi
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Rodent malaria parasite RNA hybridized on Illumina Mouse WG-6 v2.0 Expression BeadChip

Publication Title

Transcriptome analysis of blood and spleen in virulent and avirulent mouse malaria infection.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP056378
Transcriptome analysis of SiHa cells
  • organism-icon Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIlluminaHiSeq2000

Description

This study assessed the transcriptional profile of SiHa cells. SiHa is a cervical cancer cell line with integrated HPV16, and was used as a model to study human gene expression in the context of integrated virus. Gene expression in SiHa, calculated by Cufflinks, was scored in windows around the locations of known viral integrations in patients or cell lines to determine if there was an association between gene expression and viral integration. We found that SiHa gene expression was higher near loci of integration for HPV18 vs. HPV16, cervical tissues vs. head and neck cancers, and cervical cancers vs. in vitro integrations. This study provides insight into the factors that may influence where viruses integrate in the human genome. Overall design: Gene Expression in untreated SiHa cells.

Publication Title

Meta-Analysis of DNA Tumor-Viral Integration Site Selection Indicates a Role for Repeats, Gene Expression and Epigenetics.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE94746
Differential gene expression in the adipose tissue of crossbred beef cows with divergent gain after feed restriction and ad libitum feeding studies.
  • organism-icon Bos taurus
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Bovine Gene 1.1 ST Array (bovgene11st)

Description

Beef cow adipose tissue transcriptome

Publication Title

Differential transcript abundance in adipose tissue of mature beef cows during feed restriction and realimentation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE5332
mTOR pathway controls mitochondrial gene expression and respiration through the YY1/PGC-1alpha transcriptional complex
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Mitochondrial oxidative function is tightly controlled to maintain energy homeostasis in response to nutrient and hormonal signals. An important cellular component in the energy sensing response is the target of rapamycin (TOR) kinase pathway; however whether and how mTOR controls mitochondrial oxidative activity is unknown. Here, we show that mTOR kinase activity stimulates mitochondrial gene expression and oxidative function. In skeletal muscle cells and TSC2-/- MEFs, the mTOR inhibitor rapamycin largely decreased gene expression of mitochondrial transcriptional regulators such as PGC-1alpha and the transcription factors ERRalpha and NRFs. As a consequence, mitochondrial gene expression and oxygen consumption were reduced upon mTOR inhibition. Using computational genomics, we identified the transcription factor YY1 as a common target of mTOR and PGC-1alpha that controls mitochondrial gene expression. Inhibition of mTOR resulted in a failure of YY1 to interact and be coactivated by PGC-1alpha. Notably, knock-down of YY1 in skeletal muscle cells caused a significant decrease in mRNAs of mitochondrial regulators and mitochondrial genes that resulted in a decrease in respiration. Moreover, YY1 was required for rapamycin-dependent repression of mitochondrial genes. Thus, we have identified a novel mechanism in which a nutrient sensor (mTOR) balances energy metabolism via transcriptional control of mitochondrial oxidative function. These results have important implications for our understanding of how these pathways might be altered in metabolic diseases and cancer.

Publication Title

mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE27976
Calvarial osteoblast transcriptome analysis identifies genetic targets and extracellular matrix-mediated focal adhesion as potential biomarkers for single-suture craniosynostosis
  • organism-icon Homo sapiens
  • sample-icon 248 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Craniosynostosis is a disease defined by premature fusion of one or more cranial sutures. The mechanistic pathology of isolated single-suture craniosynostosis is complex and while a number of genetic biomarkers and environmental predispositions have been identified, in many cases the causes remain controversial and inconclusive at best. After controlling for variables contributing to potential bias, FGF7, SFRP4, and VCAM1 emerged as potential genetic biomarkers for single-suture craniosynostosis due to their significantly large changes in gene expression compared to the control population. Furthermore, pathway analysis implicated focal adhesion and extracellular matrix (ECM)-receptor interaction as differentially regulated gene networks when comparing all cases of single-suture synostosis and controls. Lastly, overall gene expression was found to be highly conserved between coronal and metopic cases, as evidenced by the fact that WNT2 and IGFBP2 were the only differentially regulated genes identified in a direct comparison. These results not only confirm the roles of previously reported craniosynostosis-related targets but also introduce novel genetic biomarkers and pathways that may play critical roles in its pathogenesis.

Publication Title

Differential expression of extracellular matrix-mediated pathways in single-suture craniosynostosis.

Sample Metadata Fields

Sex, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact