refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 7 of 7 results
Sort by

Filters

Technology

Platform

accession-icon GSE18560
Deciphering the Wnt-dependent gene signature in colorectal cancer cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Microarray-based gene expression data were generated from RNA from Ls174T colorectal carcinoma cell lines in which Wnt-dependent transcriptional activity can be abrogated by inducible overexpression of a dominant-negative form of Tcf4 or siRNA against -catenin.

Publication Title

Integrated genome-wide analysis of transcription factor occupancy, RNA polymerase II binding and steady-state RNA levels identify differentially regulated functional gene classes.

Sample Metadata Fields

Specimen part, Cell line, Time

View Samples
accession-icon GSE83524
RNA Expression Data from Four Isolated Bovine Ovarian Somatic Cell Types
  • organism-icon Bos taurus
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Bovine Gene 1.0 ST Array (bovgene10st)

Description

After ovulation, somatic cells of the ovarian follicle (theca and granulosa cells) become the small and large luteal cells of the corpus luteum. Aside from known cell type-specific receptors and steroidogenic enzymes, little is known about the differences in the gene expression profiles of these four cell types. Analysis of the RNA present in each bovine cell type using Affymetrix microarrays yielded new cell-specific genetic markers, functional insight into the behavior of each cell type via Gene Ontology Annotations and Ingenuity Pathway Analysis, and evidence of small and large luteal cell lineages using Principle Component Analysis. Enriched expression of select genes for each cell type was validated by qPCR. This expression analysis offers insight into the lineage and differentiation process that transforms somatic follicular cells into luteal cells.

Publication Title

Gene expression profiling of bovine ovarian follicular and luteal cells provides insight into cellular identities and functions.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP126311
Single cell RNA sequencing of kidney tubuloids and the tissue that the tubuloids were derived from
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Adult Stem Cell (ASC )-derived organoids are 3D epithelial structures that recapitulate essential aspects of their organ of origin. We have developed conditions for the long-term growth of primary kidney tubular epithelial organoids ('tubuloids'). Cultures can be established from mouse and human kidney tissue, as well as from urine and can be expanded for at least 20 passages (> 6 months). The structures retain a normal number of chromosomes. Human tubuloids represent proximal as well as distal nephron segments, as evidenced by gene expression, immunofluorescence and tubular functional analyses. BK virus infection of tubuloids recapitulates in vivo phenomena. "Tumoroids" can be established from Wilms nephroblastoma. Kidney tubuloids from urine from a subject with Cystic Fibrosis (CF) allows ex vivo assessment of treatment efficacy. Finally, tubuloids cultured on microfluidic organ-on-a-chip plates adopt a tubular conformation and display active (trans-)epithelial transport function. Adult kidney-derived epithelial tubuloids allow studies of hereditary, infectious and malignant kidney disease in a personalized fashion. Overall design: We generated single cell transcriptome data of kidney tubuloids and the tissue that the tubuloids were derived from

Publication Title

Tubuloids derived from human adult kidney and urine for personalized disease modeling.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP126310
Bulk RNA sequencing of kidney tubuloids and the tissue that the tubuloids were derived from
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Adult Stem Cell (ASC )-derived organoids are 3D epithelial structures that recapitulate essential aspects of their organ of origin. We have developed conditions for the long-term growth of primary kidney tubular epithelial organoids ('tubuloids'). Cultures can be established from mouse and human kidney tissue, as well as from urine and can be expanded for at least 20 passages (> 6 months). The structures retain a normal number of chromosomes. Human tubuloids represent proximal as well as distal nephron segments, as evidenced by gene expression, immunofluorescence and tubular functional analyses. BK virus infection of tubuloids recapitulates in vivo phenomena. "Tumoroids" can be established from Wilms nephroblastoma. Kidney tubuloids from urine from a subject with Cystic Fibrosis (CF) allows ex vivo assessment of treatment efficacy. Finally, tubuloids cultured on microfluidic organ-on-a-chip plates adopt a tubular conformation and display active (trans-)epithelial transport function. Adult kidney-derived epithelial tubuloids allow studies of hereditary, infectious and malignant kidney disease in a personalized fashion. Overall design: We generated transcriptome data of kidney tubuloids and the tissue that the tubuloids were derived from

Publication Title

Tubuloids derived from human adult kidney and urine for personalized disease modeling.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE39145
Multiple DNA repair pathways collectively protect against DNA damage-induced replicative aging.
  • organism-icon Caenorhabditis elegans
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

We demonstrate that transcriptomic profiling of the NER mutant ercc-1 offers better understanding of the complex phenotypes of ercc-1 deficiency in C. elegans, as it does in mammalian models. There is a transcriptomic shift in ercc-1 mutants that suggests a stochastic impairment of growth and development, with a shift towards a higher proportion of males in the population. Extensive phenotypic analyses confirm that NER deficiency in C. elegans leads to severe developmental and growth defects and a reduced replicative lifespan, although post-mitotic lifespan is not affected. Results suggest that these defects are caused by an inability to cope with randomly occurring DNA damage, which may interfere with transcription and replication.

Publication Title

DNA damage leads to progressive replicative decline but extends the life span of long-lived mutant animals.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE35844
Dicer1 deletion in myeloid-committed progenitors causes neutrophil dysplasia and blocks macrophage/dendritic cell development in mice
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

MiRNAs have the potential to regulate cellular differentiation programs. However, miRNA-deficiency in primary hematopoietic stem cells (HSCs) results in HSC depletion in mice, leaving the question of whether miRNAs play a role in early-lineage decisions unanswered. To address this issue, we deleted Dicer1, which encodes an essential RNaseIII enzyme for miRNA biogenesis, in murine CCAAT/enhancer-binding protein alpha (C/EBPA)-positive myeloid-committed progenitors in vivo. In contrast to the results in HSCs, we found that miRNA depletion affected neither the number of myeloid progenitors nor the percentage of C/EBPA-positive progenitor cells. Analysis of gene-expression profiles from wild type and Dicer1-deficient granulocyte-macrophage progenitors (GMPs) revealed that 20 miRNA families were active in GMPs. Of the derepressed miRNA targets in Dicer1-null GMPs, 27% are normally exclusively expressed in HSCs or are specific for multi-potent progenitors and erythropoiesis, indicating an altered gene-expression landscape. Dicer1-deficient GMPs were defective in myeloid development in vitro and exhibited an increased replating capacity, indicating a regained self-renewal potential of these cells. In mice, Dicer1 deletion blocked monocytic differentiation, depleted macrophages and caused myeloid dysplasia with morphological features of Pelger-Hut anomaly. These results provide evidence for a miRNA-controlled switch for a cellular program of self-renewal and expansion towards myeloid differentiation in GMPs.

Publication Title

Dicer1 deletion in myeloid-committed progenitors causes neutrophil dysplasia and blocks macrophage/dendritic cell development in mice.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE23800
Analysis of differential gene expression in Cebpa-positive and Cebpa-negative hematopoietic stem cells using a Cebpa-Cre EYFP reporter mouse model
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

C/EBPalpha is a transcription factor critically involved in myeloid development and indispensable for formation of granulocytes. To track the cellular fate of stem and progenitor (LSK) cells, which express C/EBPalpha, we developed a mouse model expressing Cre recombinase from the Cebpa promoter and an inducible EYFP allele. We show that Cebpa/EYFP+ cells represent a significant subset of LSK cells, which predominantly give rise to myeloid cells in steady state hematopoiesis.

Publication Title

Lineage-instructive function of C/EBPα in multipotent hematopoietic cells and early thymic progenitors.

Sample Metadata Fields

Specimen part

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact