refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 3 of 3 results
Sort by

Filters

Technology

Platform

accession-icon SRP115922
Neuronal EphB1 induces STAT3 activation in astrocytes, which is impaired in ALS models [Mm]
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Astrocyte  responses to neuronal injury may be beneficial or detrimental to neuronal recovery, but the mechanism that determines these different responses are poorly understood. Transcriptional analysis showed that EphB1 induces a protective inflammatory signature in astrocytes, which is distinct from the response evoked by interleukin (IL)-6, which is known to have both pro- and anti-inflammatory properties. We demonstrate that this beneficial EphB1 induced signaling pathway is disrupted in astrocytes derived from human induced pluripotent stem cells (iPSC) of amyotrophic lateral sclerosis (ALS) patients. Overall design: Examination of transcriptome-wide gene expression profiles of purified  murine wildtype astrocyte cultures (untreated and treated with IL-6 or EphB1).

Publication Title

A neuroprotective astrocyte state is induced by neuronal signal EphB1 but fails in ALS models.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP115921
Neuronal EphB1 induces STAT3 activation in astrocytes, which is impaired in ALS models [Hs]
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Astrocyte  responses to neuronal injury may be beneficial or detrimental to neuronal recovery, but the mechanism that determines these different responses are poorly understood. Transcriptional analysis showed that EphB1 induces a protective inflammatory signature in astrocytes, which is distinct from the response evoked by interleukin (IL)-6, which is known to have both pro- and anti-inflammatory properties. We demonstrate that this beneficial EphB1 induced signaling pathway is disrupted in astrocytes derived from human induced pluripotent stem cells (iPSC) of amyotrophic lateral sclerosis (ALS) patients. Overall design: Examination of transcriptome-wide gene expression profiles of terminally differentiated and enriched iPSC-derived astrocytes harboring the SOD1 D90A mutation

Publication Title

A neuroprotective astrocyte state is induced by neuronal signal EphB1 but fails in ALS models.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE15774
Transcriptional networks regulated by drugs of abuse in mouse striatum
  • organism-icon Mus musculus
  • sample-icon 108 Downloadable Samples
  • Technology Badge IconIllumina mouse-6 v1.1 expression beadchip

Description

In summary, we characterized genomic signatures of response to drugs of abuse and we found positive correlations between the drug-induced expression and various behavioral effects. These signatures are formed by two dynamically inducible transcriptional networks: (1) CREB/SRF-dependent gene pattern that appears to be related to drug-induced neuronal activity, (2) the pattern of genes controlled at least in part via release of glucocorticoids and androgens that are associated with rewarding and harmful drug effects. The discovery of co-expressed networks of genes allowed for the identification of master-switch controlling factors involved in molecular response to the drugs. Finally, using the pharmacological tools we were able to dissect and inhibit particular gene expression patterns from genomic profile.

Publication Title

The dissection of transcriptional modules regulated by various drugs of abuse in the mouse striatum.

Sample Metadata Fields

Compound, Time

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact