refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 499 results
Sort by

Filters

Technology

Platform

accession-icon GSE119351
A Deiodinase Polymorphism Causes ER-Stress And Hypothyroidism In The Brain
  • organism-icon Mus musculus
  • sample-icon 40 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Clariom S Array (clariomsmouse)

Description

Expression data from different brain regions of mice

Publication Title

Type 2 deiodinase polymorphism causes ER stress and hypothyroidism in the brain.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP072298
Analysis of gene expression during the early stages of zebrafish heart valve development
  • organism-icon Danio rerio
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

We report changes in the levels of gene expression between 48hpf hearts and 56hpf hearts, the initial stages of valvulogenesis Overall design: 48hpf and 56hpf hearts were dissected and RNA was extracted. RNA profiles were then generated at each stage using Illumina deep sequencing

Publication Title

klf2a couples mechanotransduction and zebrafish valve morphogenesis through fibronectin synthesis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP071930
Global transcript structure resolution of high gene density genomes through multi-platform data integration: deepCAGE
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

deepCAGE was used in conjunction with Pacific Biosciences Iso-Seq and Illumina RNA-Seq to globally resolve transcript structures in replicating Epstein-Barr virus. Overall design: deepCAGE of replicating Epstein-Barr virus in Akata cells to identify transcript 5'' ends

Publication Title

Global transcript structure resolution of high gene density genomes through multi-platform data integration.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP041034
RNAseq analysis of murine ITPKB deficient versus wild type LT-HSC
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Tight regulation of hematopoietic stem cell (HSC) homeostasis is essential for life-long hematopoiesis, for preventing blood cancers and for averting bone marrow failure. The underlying mechanisms are incompletely understood. Here, we identify production of inositol-tetrakisphosphate (IP4) by inositoltrisphosphate 3-kinase B (ItpkB) as essential for HSC quiescence and function. Young ItpkB-/- mice accumulated phenotypic HSC and showed extramedullary hematopoiesis. ItpkB-/- HSC were less quiescent and proliferated more than wildtype controls. They downregulated quiescence and stemness associated mRNAs, but upregulated activation, oxidative metabolism, protein synthesis and lineage associated transcripts. Although they showed no significant homing defects, ItpkB-/- HSC had a severely reduced competitive long-term repopulating potential. Aging ItpkB-/- mice lost hematopoietic stem and progenitor cells and died with severe anemia. Wildtype HSC normally repopulated ItpkB-/- hosts, incidating a HSC-intrinsic ItpkB requirement. ItpkB-/- HSC had reduced cobblestone-area forming cell activity in vitro and showed increased stem-cell-factor activation of the phosphoinositide 3-kinase (PI3K) effector Akt, reversed by exogenous provision of the known PI3K/Akt antagonist IP4. They also showed transcriptome changes consistent with hyperactive Akt/mTOR signaling. Thus, we propose that ItpkB ensures HSC quiescence by limiting cytokine-induced PI3K signaling in HSC. Overall design: For each of 3 replicate ItpkB-/- or wt samples, we enriched Lin- cells from BM of 4 pooled age-matched mice with Rapidspheres (Stemcell Technologies), FACS-sorted =10,000 LSK CD34-CD150+CD48-Flk2- LT-HSC into lysis buffer and prepared RNA with RNeasy Micro kits (Quiagen). RNA sequencing was done using an Illumina HISeq Analyzer 2000, Casava v1.8.2 genome analyzer pipeline, TopHat v1.4.1/Bowtie2 genome alignment and Partek v6.6 mRNA annotation software. Statistical analyses were done with edgeR (Bioconductor package), excluding genes with false discovery rates >0.15, fold-change magnitudes =1.4 and log2(counts per million) =4 to avoid undefined values and the poorly defined log fold-changes for low counts close to 0. Unsupervised clustering of 441 significantly changed genes was done with dChip using rank correlation and a centroid linkage method. Scatter plots were generated in Spotfire. GSEA was performed with gene set permutation, using gene sets from MSigDB (www.broadinstitute.org/gsea/msigdb/index.jsp) or manually curated from, excluding genes without HUGO approved symbols

Publication Title

IP3 3-kinase B controls hematopoietic stem cell homeostasis and prevents lethal hematopoietic failure in mice.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE87650
Integrative Epigenome-Wide Analysis Shows That DNA Methylation May Mediate Genetic Risk In Inflammatory Bowel Disease
  • organism-icon Homo sapiens
  • sample-icon 251 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Integrative epigenome-wide analysis demonstrates that DNA methylation may mediate genetic risk in inflammatory bowel disease.

Sample Metadata Fields

Sex, Age, Specimen part, Subject

View Samples
accession-icon GSE86434
Integrative Epigenome-Wide Analysis Shows That DNA Methylation May Mediate Genetic Risk In Inflammatory Bowel Disease [Expression profiling]
  • organism-icon Homo sapiens
  • sample-icon 251 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Epigenetic alterations may provide important insights into gene-environment interaction in inflammatory bowel disease (IBD). Here we observe epigenome-wide DNA methylation differences in 240 newly-diagnosed IBD cases and 190 controls. These include 439 differentially methylated positions (DMPs) and 5 differentially methylated regions (DMRs), which we study in detail using whole genome bisulphite sequencing. We replicate the top DMP (RPS6KA2) and DMRs (VMP1, ITGB2, TXK) in an independent cohort.

Publication Title

Integrative epigenome-wide analysis demonstrates that DNA methylation may mediate genetic risk in inflammatory bowel disease.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE4097
Analysis of target genes induced by the Amyloid Precursor Protein Intracellular Domain
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

The amyloid precursor protein (APP) plays a central role in the pathogenesis of Alzheimers disease (AD). Processing of APP by - and -secretase activities results in the production of -amyloid (A), the main constituent of Alzheimer plaques, but also in the generation of the APP intracellular domain (AICD). Recently, it has been demonstrated that AICD has transactivation potential, however, the targets of AICD dependent gene regulation and hence the physiological role of AICD remain largely unknown. In this work we analysed transcriptome changes during AICD dependent gene regulation using a human neural cell culture system inducible for expression of AICD, its co-activator Fe65, or the combination of both. Induction of AICD was associated with increased expression of genes with known function in the organization and dynamics of the actin cytoskeleton as well as genes involved in the regulation of apoptosis.

Publication Title

Modulation of gene expression and cytoskeletal dynamics by the amyloid precursor protein intracellular domain (AICD).

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE56457
A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequence Quality Control consortium
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene Expression Array (primeview), Illumina HumanHT-12 V4.0 expression beadchip, Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

We present primary results from the Sequencing Quality Control (SEQC) project, coordinated by the United States Food and Drug Administration. Examining Illumina HiSeq, Life Technologies SOLiD and Roche 454 platforms at multiple laboratory sites using reference RNA samples with built-in controls, we assess RNA sequencing (RNA-seq) performance for sequence discovery and differential expression profiling and compare it to microarray and quantitative PCR (qPCR) data using complementary metrics. At all sequencing depths, we discover unannotated exon-exon junctions, with >80% validated by qPCR. We find that measurements of relative expression are accurate and reproducible across sites and platforms if specific filters are used. In contrast, RNA-seq and microarrays do not provide accurate absolute measurements, and gene-specific biases are observed, for these and qPCR. Measurement performance depends on the platform and data analysis pipeline, and variation is large for transcriptlevel profiling. The complete SEQC data sets, comprising >100 billion reads (10Tb), provide unique resources for evaluating RNA-seq analyses for clinical and regulatory settings.

Publication Title

A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control Consortium.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE37517
Expression data from human induced pluripotent stem cell derived NSCs and striatal-like cells
  • organism-icon Homo sapiens
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Huntington's disease (HD) is an inherited neurodegenerative disorder caused by an expanded stretch of CAG trinucleotide repeats that results in neuronal dysfunction and death. We made induced pluripotent stem cell (iPSC) lines from HD patients and controls. Though no obvious effects of the CAG expansion on reprogramming or subsequent neural stem cell (NSC) production were seen, HD-NSCs showed CAG expansion-associated gene expression patterns and, upon differentiation, changes in electrophysiology, metabolism, cell adhesion, and ultimately an increased risk of cell death for both medium and longer CAG repeat expansions, with some deficits greater in cells from longer repeat HD NSCs. The HD180 lines were more vulnerable than control lines to cellular stressors and BDNF withdrawal using a range of assays across consortium laboratories. This HD iPSC collection represents a unique and well-characterized resource to elucidate disease mechanisms in HD and provides a novel human stem cell platform for screening new candidate therapeutics.

Publication Title

Induced pluripotent stem cells from patients with Huntington's disease show CAG-repeat-expansion-associated phenotypes.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE51212
Whole transcriptome analysis of erlotinib treatment in EGFR-mutant cells
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We were interested in characterizing the transcriptional changes that occur on a genome-wide scale following treatment of EGFR-mutant lung cancer cells with targeted therapies.

Publication Title

Inhibition of mutant EGFR in lung cancer cells triggers SOX2-FOXO6-dependent survival pathways.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact