refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 528 results
Sort by

Filters

Technology

Platform

accession-icon GSE20405
HDAC and aminopeptidase inhibitor treatment of myeloma cells
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

H929 human myeloma cells were exposed to aminopeptidase inhibitor (CHR-2797), HDAC inhibitor (CHR-3996), or a combinaion of the two agents, for 24 hours.

Publication Title

The combination of HDAC and aminopeptidase inhibitors is highly synergistic in myeloma and leads to disruption of the NFκB signalling pathway.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon SRP041011
Rapid proliferation and differentiation impairs the development of memory CD8+ T cells in early life
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Neonates often generate incomplete immunity against intracellular pathogens, although the mechanism of this defect is poorly understood. An important question is whether the impaired development of memory CD8+ T cells in neonates is due to an immature priming environment or lymphocyte-intrinsic defects. Here we show that neonatal and adult CD8+ T cells adopted different fates when responding to equal amounts of stimulation in the same host. While adult CD8+ T cells differentiated into a heterogeneous pool of effector and memory cells, neonatal CD8+ T cells preferentially gave rise to short-lived effector cells and exhibited a distinct gene expression profile. Surprisingly, impaired neonatal memory formation was not due to a lack of responsiveness, but instead because neonatal CD8+ T cells expanded more rapidly than adult cells and quickly became terminally differentiated. Collectively, these findings demonstrate that neonatal CD8+ T cells exhibit an imbalance in effector and memory CD8+ T cell differentiation, which impairs the formation of memory CD8+ T cells in early life Overall design: mRNA profiles of effector CD8+ T cells from neonatal and adult mice

Publication Title

Rapid proliferation and differentiation impairs the development of memory CD8+ T cells in early life.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE35896
Gene expression data from 62 colorectal cancers
  • organism-icon Homo sapiens
  • sample-icon 62 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We stratified colorectal tumor samples using a new unsupervised, iterative method based on non-negative matrix factorization (NMF). The resulting five subtypes exhibited activation of specific signaling pathways, and significant differences in microsatellite status and tumor location. We could also align three CRC cell lines panels to these subtypes.

Publication Title

Subtypes of primary colorectal tumors correlate with response to targeted treatment in colorectal cell lines.

Sample Metadata Fields

Sex, Race

View Samples
accession-icon SRP103925
The fate of CD8+ T cells during infection is linked to their developmental origin [Naïve_Timestamp]
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

During immune ontogeny the thymus is colonized by distinct waves of hematopoietic stem cells that give rise to unique lineages of immune cells.  In this report, we asked whether the developmental origin of CD8+ T cells influences their response to infection later in adulthood.  To answer this question, we developed a system to 'timestamp' CD8+ T cells in situ at various stages of development (1d and 28d) and examined their behavior at 8 weeks of age.  We found that neonatal-derived CD8+ T cells have an intrinsic propensity to become memory phenotype cells prior to infection and are the first cells to proliferate and become effectors after microbial challenge. These data indicate that there are developmental layers in the adult CD8+ T cell response to infection and that the heterogeneity in the effector pool is linked to the variation in the developmental origins of the responding cells. This dataset profiles gene expression in 1day- and 28day-timestamped naïve CD8+ T cells in 8 week old mice. Overall design: gene expression profiling of naïve CD8+ T cells in 8 week old mice, looking at two samples: cells made at 1 day or 28 days of life, in duplicate.

Publication Title

Developmental Origin Governs CD8<sup>+</sup> T Cell Fate Decisions during Infection.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE62099
CD161 defines a transcriptional and functional phenotype shared across distinct human T cell lineages
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HumanWG-6 v3.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

CD161 defines a transcriptional and functional phenotype across distinct human T cell lineages.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE62096
CD161 defines a transcriptional and functional phenotype shared across distinct human T cell lineages (CD 8)
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HumanWG-6 v3.0 expression beadchip

Description

T lymphocytes are conventionally divided into subsets based upon expression of co-receptors, cytokines and surface molecules. By mRNA microarray analysis, T lymphocytes that express the C-type lectin CD161 were identified to share a transcriptional profile, which led to the identification of an innate function across these previously defined subsets, including CD8, CD4 and TCRgd T cells.

Publication Title

CD161 defines a transcriptional and functional phenotype across distinct human T cell lineages.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE62095
CD161 defines a transcriptional and functional phenotype shared across distinct human T cell lineages (CD4)
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HumanWG-6 v3.0 expression beadchip

Description

T lymphocytes are conventionally divided into subsets based upon expression of co-receptors, cytokines and surface molecules. By mRNA microarray analysis, T lymphocytes that express the C-type lectin CD161 were identified to share a transcriptional profile, which led to the identification of an innate function across these previously defined subsets, including CD8, CD4 and TCRgd T cells.

Publication Title

CD161 defines a transcriptional and functional phenotype across distinct human T cell lineages.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP169509
A platform for generation of chamber specific cardiac tissues and disease modelling
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIon Torrent Proton

Description

We report, for the first time, engineering of heteropolar cardiac tissues containing distinct atrial and ventricular ends, and demonstrate their spatially confined responses to serotonin and ranolazine. Uniquely, electrical conditioning for up to 8 months enabled modeling of polygenic left ventricular hypertrophy starting from patient cells. Overall design: hiPSC-CMs from 3 affected (Left Ventricular Hypertrophy [LVH]) and 3 non-affected donors were sequenced using ThermoFisher's whole transcriptome targeted AmpliSeq assay

Publication Title

A Platform for Generation of Chamber-Specific Cardiac Tissues and Disease Modeling.

Sample Metadata Fields

Specimen part, Disease, Subject

View Samples
accession-icon GSE48303
Expression data from aldosterone-producing adenomas (APAs) with a somatic mutation in either KCNJ5, CACNA1D, or ATP1A1
  • organism-icon Homo sapiens
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Analysis of aldosterone-producing adenoma (APA) samples from patients with primary hyperaldosteronism. These APAs have a somatic mutation in either KCNJ5, CACNA1D, or ATP1A1. Results provide insight into the different mechanisms each mutation may cause leading to elevated aldosterone production in APA.

Publication Title

Somatic mutations in ATP1A1 and CACNA1D underlie a common subtype of adrenal hypertension.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon SRP072468
RNA-seq analysis of testis transcripts from Wt and Trf2-/- mice [RNA-seq]
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

TRF2 is a paralogue of TATA-box binding protein (TBP) with highest expression in testis. Although Trf2 inactivation in mice leads to arrested spermatogenesis, there is no direct evidence that Trf2 is recruited to chromatin to directly regulate gene expression. We used genetically modified mice where endogenous Trf2 has been modified to carry a TAP-TAG to perform ChIP-reChIP followed by deep sequencing. We found that Trf2 is recruited to all active promoters as a subunit of TFIIA/ALF complex together with TBP. To assess the effect of Trf2 inactivation on gene expression we performed RNA-seq on WT and Trf2-/- testes at 21 days of age when haploid cell gene expression is activated. Overall design: The testes from three 21 day old WT and three Trf2-/- males were taken to prepare total RNAs for deep sequencing.

Publication Title

TRF2 is recruited to the pre-initiation complex as a testis-specific subunit of TFIIA/ALF to promote haploid cell gene expression.

Sample Metadata Fields

Specimen part, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact