refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 883 results
Sort by

Filters

Technology

Platform

accession-icon SRP174499
In vivo developmental trajectories of human podocyte development inform in vitro differentiation of pluripotent stem-cell derived podocytes
  • organism-icon Homo sapiens
  • sample-icon 31 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

To assess in vitro derived podocytes, we examined the transcriptional changes during human podocyte development and applied that knowledge to pinpoint strengths and limitations of hESC-derived podocytes. Overall design: We performed transcriptionaling profiling of kidney organoids and organoid-derived MAFB-eGFP+ podocytes at various differentiation time points.

Publication Title

In Vivo Developmental Trajectories of Human Podocyte Inform In Vitro Differentiation of Pluripotent Stem Cell-Derived Podocytes.

Sample Metadata Fields

Subject

View Samples
accession-icon SRP187064
Transcriptomic profile of human embryonic renal corpuscles
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

In order to characterize and benchmark the podocytes-like cells generated through human ES cell differentiation, we generated transcriptional profiles of renal corpuscles from embryonic human kidneys using RNA-Seq. To compare, we also performed RNA-Seq of human immortalized podocyte cell lines before and after thermoswitch. Overall design: We performed RNA-Seq of poly-A selected RNA from hESC-derived kidney organoids, organoid-derived MAFB-eGFP+ podocytes at different time points, and human immortalized podocytes.

Publication Title

In Vivo Developmental Trajectories of Human Podocyte Inform In Vitro Differentiation of Pluripotent Stem Cell-Derived Podocytes.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP122898
Human Sandhoff Disease Cerebral Organoids Exhibit Enlarged Size, Increased Cellular Proliferation, and Impaired Differentiation
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Sandhoff disease, one of the GM2 gangliosidoses, is a lysosomal storage disorder characterized by the absence of b-hexosaminidase A and B activity and the concomitant lysosomal accumulation of its substrate, GM2 ganglioside. It features catastrophic neurodegeneration and death in early childhood. How the lysosomal accumulation of ganglioside might affect the early development of the nervous system is not understood. Recently, cerebral organoids derived from induced pluripotent stem (iPS) cells have illuminated early developmental events altered by disease processes. To develop an early neurodevelopmental model of Sandhoff disease, we first generated iPS cells from the fibroblasts of an infantile Sandhoff disease patient, then corrected one of the mutant HEXB alleles in those iPS cells with CRISPR/Cas9 genome-editing technology, thereby creating isogenic controls. Next, we used the parental Sandhoff disease iPS cells and isogenic HEXB-corrected iPS cell clones to generate cerebral organoids that modeled the first trimester of neurodevelopment. The Sandhoff disease organoids but not the HEXB-corrected organoids accumulated GM2 ganglioside, and exhibited increased size and cellular proliferation compared with the HEXB-corrected organoids. Whole-transcriptome analysis demonstrated that development was impaired in the Sandhoff disease organoids, suggesting that alterations in neuronal differentiation may occur during early development in the GM2 gangliosidoses Overall design: Sandhoff disease and corrected cerebral organoids grown for 8 and 10 weeks were analyzed: four samples at each time point, each consisting of 4–6 pooled organoids, for both Sandhoff and corrected. Whole transcriptome from Sandhoff disease and corrected organoids for both time points were generated by deep sequencing on an Illumina HiSeq 2500.

Publication Title

Cerebral organoids derived from Sandhoff disease-induced pluripotent stem cells exhibit impaired neurodifferentiation.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE84051
VLX600 characterization
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Microarray based mRNA profiling was used to identify the mechanism of action for the small molecule VLX600.

Publication Title

Iron chelators target both proliferating and quiescent cancer cells.

Sample Metadata Fields

Disease, Cell line, Treatment

View Samples
accession-icon GSE20339
cRNA hybridizations of Tsu-1 and Kas-1 accessions of Arabidopsis thaliana under well-watered and mild soil drying
  • organism-icon Arabidopsis thaliana
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

These data provide a basis for exploration of gene expression differences between physiologically extreme accessions of Arabidopsis thaliana.

Publication Title

Exploring genetic and expression differences between physiologically extreme ecotypes: comparative genomic hybridization and gene expression studies of Kas-1 and Tsu-1 accessions of Arabidopsis thaliana.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE20340
Genomic DNA hybridizations of Col-0, Tsu-1, and Kas-1 accessions of Arabidopsis thaliana
  • organism-icon Arabidopsis thaliana
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

These data provide a basis for the detection of sequence based polymorphisms between the Col-1, Tsu-1, and Kas-1 accessions of Arabidopsis thaliana. The experimental data provides an initial characterization of differences among the accessions, as well as a means for improving gene expression studies with the filtering of SFP from arrays studies.

Publication Title

Exploring genetic and expression differences between physiologically extreme ecotypes: comparative genomic hybridization and gene expression studies of Kas-1 and Tsu-1 accessions of Arabidopsis thaliana.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE55486
Defective Mitophagy in XPA via PARP1 activation and NAD+/SIRT1-depletion: Implications for neurodegeneration
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip, Illumina MouseRef-8 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Defective mitophagy in XPA via PARP-1 hyperactivation and NAD(+)/SIRT1 reduction.

Sample Metadata Fields

Sex, Cell line, Treatment

View Samples
accession-icon GSE55485
Defective Mitophagy in XPA via PARP1 activation and NAD+/SIRT1-depletion: Implications for neurodegeneration (mouse)
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

Mitochondrial dysfunction is a common feature in neurodegeneration and aging. We identify mitochondrial dysfunction in xeroderma pigmentosum group A (XPA), a nucleotide excision DNA repair disorder with severe neurodegeneration, in silico and in vivo. XPA deficient cells show defective mitophagy with excessive cleavage of PINK1 and increased mitochondrial membrane potential. The mitochondrial abnormalities appear to be caused by decreased activation of the NAD+-SIRT1-PGC-1 axis triggered by hyperactivation of the DNA damage sensor PARP1. This phenotype is rescued by PARP1 inhibition or by supplementation with NAD+ precursors that also rescue the lifespan defect in xpa-1 nematodes. Importantly, this pathogenesis appears common to ataxia-telangiectasia and Cockayne syndrome, two other DNA repair disorders with neurodegeneration, but absent in XPC, a DNA repair disorder without neurodegeneration. Our findings reveal a novel nuclear-mitochondrial cross-talk that is critical for the maintenance of mitochondrial health.

Publication Title

Defective mitophagy in XPA via PARP-1 hyperactivation and NAD(+)/SIRT1 reduction.

Sample Metadata Fields

Sex, Treatment

View Samples
accession-icon SRP081252
Loss of Snf5 and the formation of an aberrant SWI/SNF complex
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Aberrant forms of the SWI/SNF chromatin remodeling complex are associated with human disease. Loss of the Snf5 subunit of SWI/SNF is a driver mutation in pediatric rhabdoid cancers and forms aberrant sub-complexes that are not well characterized. We determined the effects of loss of Snf5 on the composition, nucleosome binding, recruitment and remodeling activities of yeast SWI/SNF. The Snf5 subunit interacts with the ATPase domain of Snf2 and forms a submodule consisting of Snf5, Swp82 and Taf14 as shown by mapping SWI/SNF subunit interactions by crosslinking-mass spectrometry and subunit deletion followed by immunoaffinity chromatography. Snf5 promoted binding of the Snf2 ATPase domain to nucleosomal DNA, enhanced its catalytic activity and facilitated nucleosome remodeling. Snf5 was required for acidic transcription factors to recruit SWI/SNF to chromatin. RNA-seq analysis suggested that both the recruitment and catalytic functions mediated by Snf5 are required for SWI/SNF regulation of gene expression. Overall design: Determining the effects of loss of Snf5 on the composition, nucleosome binding, recruitment, remodeling activities and gene expression profile of yeast SWI/SNF

Publication Title

Loss of Snf5 Induces Formation of an Aberrant SWI/SNF Complex.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP148854
Branched chain amino acids impact health and lifespan indirectly via amino acid balance and appetite control
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Elevated branched chain amino acids (BCAAs) are associated with obesity and insulin resistance. How long-term dietary BCAAs impact late-life health and lifespan is unknown. Here, we show that when dietary BCAAs are varied against a fixed, isocaloric macronutrient background, long-term exposure to high BCAA diets led to hyperphagia, obesity and reduced lifespan. These effects were not due to elevated BCAA per se or hepatic mTOR activation, but rather the shift in balance between dietary BCAAs and other AAs, notably tryptophan and threonine. Increasing the ratio of BCAAs to these AAs resulted in hyperphagia and was linked to central serotonin depletion. Preventing hyperphagia by calorie restriction or pair-feeding averted the health costs of a high BCAA diet. Our data highlight a role for amino acid quality in energy balance and show that health costs of chronic high BCAA intakes were not due to intrinsic toxicity; rather, to hyperphagia driven by AA imbalance. Overall design: 3 animals per sex per diet were used. Mice were fed one of four diets (all 19% total protein, 63% carbohydrate, 18% fat, total energy density 14 kJ/g) varying in BCAA content (BCAA200: twice BCAA content of control diet AIN93G; BCAA100: standard content of BCAAs; and BCAA50 and BCAA20: containing one half and one fifth of standard content of BCAAs), and either euthanized at 15 months of age or maintained for determination of lifespan.

Publication Title

Branched chain amino acids impact health and lifespan indirectly via amino acid balance and appetite control.

Sample Metadata Fields

Sex, Age, Specimen part, Cell line, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact