refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 48 results
Sort by

Filters

Technology

Platform

accession-icon SRP042020
The exon junction complex controls transposable element activity by ensuring the faithful splicing of the piwi transcript
  • organism-icon Drosophila melanogaster
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The exon junction complex (EJC) is a highly conserved ribonucleoprotein complex which binds RNAs at a late stage of the splicing reaction and remains associated following export to the cytoplasm. This complex is involved in several cellular post-transcriptional processes including mRNA localization, translation and degradation. The EJC plays an additional role in the splicing of a subset of genes in Drosophila and in human cells but the underlying mechanism remains to be elucidated. Here, we have found a novel function for the EJC and its splicing subunit RnpS1 in preventing transposon accumulation in both Drosophila germline and surrounding follicular cells. This function is mediated specifically through the control of the splicing of the piwi transcript. In absence of RnpS1 one of the piwi intron is retained. This intron contains a weak 5’ splice site as well as degenerate transposon fragments, reminiscent of heterochromatic introns. In addition, we identified a small A/T rich region, which alters its polypyrimidine tract (PPT) and confers the RnpS1’s dependency. Finally, we showed that the removal of this intron by RnpS1 requires the initial splicing of the flanking introns, suggesting a model in which the EJC facilitates the splicing of challenging introns following its initial deposition to adjacent exon junctions. Overall design: In total there are 4 different conditions. Comparisons were made between piwi mutant vs control piwi and rnps1 KD vs controls RnpS1

Publication Title

The exon junction complex controls transposable element activity by ensuring faithful splicing of the piwi transcript.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE7114
Comparative analysis of a CML cell line resistant to cyclophosphamide using oligonucleotide arrays and response to TKI
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U95 Version 2 Array (hgu95av2)

Description

Acquired imatinib resistance in chronic myelogenous leukemia (CML) can be the consequence of mutations in the kinase domain of BCR-ABL or increased protein levels. However, as in other malignancies, acquired resistance to cytostatic drugs is a common reason for treatment failure or disease progression. As a model for drug resistance, we developed a CML cell line resistant to cyclophosphamide (CP). Using oligonucleotide arrays, we examined changes in global gene expression. Selected genes were also examined by real-time PCR and flow cytometry. Neither the parent nor the resistant lines had mutations in their ATP binding domain. Filtering genes with a low-base line expression, a total of 239 genes showed significant changes (162 up- and 77 down-regulated) in the resistant clone. Most of the up-regulated genes were associated with metabolism, signal transduction, or encoded enzymes. The gene for aldehyde dehydrogenase 1 was over-expressed more than 2000 fold in the resistant clone. BCR-ABL was expressed in both cell lines to a comparable extent. When exposed to the tyrosine kinase inhibitors imatinib and nilotinib, both lines were sensitive. In conclusion, we found multiple genetic changes in a CML cell line resistant to CP related to metabolism, signal transduction or apoptosis. Despite these changes, the resistant cells retained sensitivity to tyrosine kinase inhibitors.

Publication Title

Comparative gene expression analysis of a chronic myelogenous leukemia cell line resistant to cyclophosphamide using oligonucleotide arrays and response to tyrosine kinase inhibitors.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP026258
Zea mays cultivar:Nathan Transcriptome or Gene expression
  • organism-icon Zea mays
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

In order to characterize defense responses not only cytologically, but also on the transcript level, genome-wide sequencing of mRNA isolated from non-infected control leaves and from leaves inoculated either with the WT or with GLS1 overexpressing strains was performed, using Illumina Next Generation Sequencing Technology. In order to identify transcripts specifically induced in leaves infected by ß-1,3-glucan-exposing strains, transcript patterns of leaves inoculated with GLS1 overexpressing PtrpC:GLS1 strains were compared with those of the WT. In PtrpC:GLS1-inoculated leaves, a total of 2179 genes were more than 2.5-fold increased, with many genes known as genes typically up-regulated in PAMP-triggered defense responses. These genes include genes encoding PR proteins enzymes involved in cell wall re-inforcemen, and terpene synthases possibly involved in phytoalexin synthesis. Furthermore, increased transcript abundance of genes encoding serine-threonine receptor-like kinases calmodulin, as well as zinc-finger and WRKY transcription factors have been identified. Other up-regulated genes encode proteins involved in protein degradation, i.e. proteases, ubiquitin ligases, as well as enzymes involved in synthesis of auxin or cytokinin phytohormones. In comparison, 2164 genes were more than 2.5-fold down-regulated in maize leaves infected by PtrpC:GLS1 strains, as compared to WT-infected leaves. Several of the encoded proteins are known susceptibility factors. Forty-six down-regulated genes code for proteins containing iron or manganese, or are involved in uptake of these ions, suggesting major re-arrangement of the redox-status in maize leaves after ß-glucan perception. Overall design: Examination of plant defense responses in maize plants inoculated with 2 different Colletotrichum graminicola strains.

Publication Title

Infection structure-specific expression of β-1,3-glucan synthase is essential for pathogenicity of Colletotrichum graminicola and evasion of β-glucan-triggered immunity in maize.

Sample Metadata Fields

Age, Subject, Time

View Samples
accession-icon GSE104792
Expression changes with JAK2V617F and TNF receptor block in a murine model of MPN
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We analyzed expression changes between JAK2V617F positive bone marrow cells and JAK2V617F negative cells

Publication Title

Autocrine Tnf signaling favors malignant cells in myelofibrosis in a Tnfr2-dependent fashion.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE2535
Expression data in patients with chronic myelogenous leukemia for response to imatinib
  • organism-icon Homo sapiens
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U95 Version 2 Array (hgu95av2)

Description

This is a class prediction experiment, where the class is the response status to imatinib (also called Gleevec), a drug used to treat patients with chronic myelogenous leukemia (CML). There are two data sets, a training set (from Leipzig, 8 Responders and 5 Non-Responders) and a validation set (from Mannheim, 8 Responders and 7 Non-Responders). The objective is to identify differentially regulated genes between CML patients who respond and those who do not respond to imatinib and confirm the results in the validation data set. The samples from blood or bone marrow of CML patients were hybridized to Affymetrix HG-U95Av2 chip and RMA was used to generate the normalized signal values.

Publication Title

In chronic myeloid leukemia white cells from cytogenetic responders and non-responders to imatinib have very similar gene expression signatures.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP087467
Expression profile of hematopoietic stem and progenitor cell (HSPC) compartment of FLT3-ITD and FLT3-ITD miR-155-/- mice
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

The miR-155-dependent differences in gene expression in the HSPC compartment of FLT3-ITD mice is unknown. In this experiment, we performed RNA sequencing on FLT3-ITD and FLT3-ITD miR-155-/- mouse LKS cells. Overall design: RNA sequencing was performed on RNA extracted from Lin-, cKit+, Sca1+ cells isolated via flow cytometry from FLT3-ITD and FLT3-ITD miR-155-/- mice. 3 samples were submitted for sequencing for each experimental group. Each sample contains RNA from 3 mice, in order to get enough RNA from this rare stem cell population.

Publication Title

miR-155 promotes FLT3-ITD-induced myeloproliferative disease through inhibition of the interferon response.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE138064
Interferon-β corrects massive gene dysregulation in multiple sclerosis: Short-term and long-term effects on immune regulation and neuroprotection
  • organism-icon Homo sapiens
  • sample-icon 140 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

Background: In multiple sclerosis (MS), immune up-regulation is coupled to subnormal immune response to interferon-β (IFN-β) and low serum IFN-β levels. The relationship between the defect in IFN signalling and acute and long-term effects of IFN-β on gene expression in MS is inadequately understood. Methods: We profiled IFN-β-induced transcriptome shifts, using high-resolution microarrays on 227 mononuclear cell samples from IFN-β-treated MS Complete Responders (CR) stable for five years, and stable and active Partial Responders (PR), stable and active untreated MS, and healthy controls. Findings: IFN-β injection induced short-term changes in 1,200 genes compared to baseline expression after 4-day IFN washout. Pre-injection after washout, and in response to IFN-β injections, PR more frequently had abnormal gene expression than CR. Surprisingly, short-term IFN-β induced little shift in Th1/Th17/Th2 gene expression, but up-regulated immune-inhibitory genes (ILT, IDO1, PD-L1). Expression of 8,800 genes was dysregulated n therapy-naïve compared to IFN-β-treated patients. These long-term changes in protein-coding and long non-coding RNAs affect immunity, synaptic transmission, and CNS cell survival, and correct the disordered therapy-naïve transcriptome to near-normal. In keeping with its impact on clinical course and brain repair in MS, long-term IFN-β treatment reversed the overexpression of proinflammatory and MMP genes, while enhancing genes involved in the oligodendroglia-protective integrated stress response, neuroprotection, and immunoregulation. In the rectified long-term signature, 277 transcripts differed between stable PR and CR patients.

Publication Title

Interferon-β corrects massive gene dysregulation in multiple sclerosis: Short-term and long-term effects on immune regulation and neuroprotection.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE14671
EXPRESSION SIGNATURE TO PREDICT MAJOR CYTOGENETIC RESPONSE IN CHRONIC PHASE CML PATIENTS TREATED WITH IMATINIB
  • organism-icon Homo sapiens
  • sample-icon 58 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Newly diagnosed chronic phase chronic myeloid leukemia (CML) patients with a major cytogenetic response (MCyR) after 12 months of imatinib therapy have an excellent long-term outcome, while patients without MCyR have a high progression risk. Since patients with primary cytogenetic resistance may benefit from more intensive therapy up-front, we sought to identify biomarkers to predict MCyR.

Publication Title

A gene expression signature of CD34+ cells to predict major cytogenetic response in chronic-phase chronic myeloid leukemia patients treated with imatinib.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP044124
BCR-ABL1 promotes leukemia by converting p27 into a cytoplasmic oncoprotein
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer

Description

Coordinated BCR-ABL1 kinase-dependent and -independent mechanisms convert p27 from a nuclear tumor suppressor to a cytoplasmic oncogene. Persistence of oncogenic p27 functions despite effective inhibition of BCR-ABL1 may contribute to resistance to tyrosine kinase inhibitors. Overall design: BCR-ABL1 induced p27 versus knockout, controlling with Empty vector p27 versus knock out

Publication Title

BCR-ABL1 promotes leukemia by converting p27 into a cytoplasmic oncoprotein.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE57538
MYC is an early response regulator of human adipogenesis in adipose stem cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix HT HG-U133+ PM Array Plate (hthgu133pluspm)

Description

MYC is induced early in human adipose stem cells in response to a standard MDIR adipogenic cocktail. The objective of this experiment was to identify key gene networks impacted by MYC loss-of-function in a mixed donor pool of human derived adipose stem cells.

Publication Title

MYC is an early response regulator of human adipogenesis in adipose stem cells.

Sample Metadata Fields

Sex, Race

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact