refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 2587 results
Sort by

Filters

Technology

Platform

accession-icon GSE81582
Genomic characterization of liver metastases from colorectal cancer patients
  • organism-icon Homo sapiens
  • sample-icon 51 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene Expression Array (primeview)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Genomic characterization of liver metastases from colorectal cancer patients.

Sample Metadata Fields

Sex, Age, Disease, Disease stage

View Samples
accession-icon GSE54582
Transcriptomic analysis of mammary tumors from MMTV-ErbB2 transgenic mice
  • organism-icon Mus musculus
  • sample-icon 222 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The tyrosine kinase ErbB2 positive breast tumors have more aggressive tumor growth, poorer clinical outcome, and more resistance to radiotherapy, chemotherapy and hormone therapy. A humanized anti-ErbB2 monoclonal antibody Herceptin and a small molecules inhibitor Lapatinib were developed and approved by FDA to treat patients with ErbB2 amplification and overexpression. Unfortunately, most ErbB2+ breast cancers do not respond to Herceptin and Lapatinib, and the majority of responders become resistant within 12 months of initial therapy (defined as secondary drug resistance). Such differences in response to Lapatinib treatment is contributed by substantial heterogeneity within ErbB2+ breast cancers. To address this possibility, we carried out transcriptomic analysis of mammary tumors from genetically diverse MMTV-ErbB2 mice. This will help us to have a better understanding of the heterogeneous response to ErbB2 targeted therapy and permit us to design better and more individualized (personalized) treatment strategies for human ErbB2 positive breast cancer.

Publication Title

Unraveling heterogeneous susceptibility and the evolution of breast cancer using a systems biology approach.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE40849
Vav proteins orchestrate a keratinocyte auto/paracrine program critical for skin tumorigenesis.
  • organism-icon Mus musculus
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Cutaneous squamous tumors rely on autocrine/paracrine loops for proper fitness. Targeting this Achilles heel is therefore considered a potential avenue for patient treatment. However, the mechanisms that engage and sustain such programs during tumor ontogeny are poorly understood. Here, we show that two Rho/Rac activators, the exchange factors Vav2 and Vav3, control the expression of an epithelial autocrine/paracrine program that regulates keratinocyte survival and proliferation as well as the creation of an inflammatory microenvironment. Vav proteins are also critically involved in some of the subsequent autocrine signaling loops activated in keratinocytes. The genetic inactivation of both Vav proteins reduces tumor multiplicity without hampering skin homeostasis, thus suggesting that pan-specific Vav therapies may be useful in skin tumor prevention and treatment.

Publication Title

The Rho exchange factors Vav2 and Vav3 favor skin tumor initiation and promotion by engaging extracellular signaling loops.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP087724
Transcriptome of diurnal wild-type neutrophils and neutrophils deficient in cxcr2, cxcr4 and arntl
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Our study aims to analyze time-dependent changes in neutrophil phenotype, compare them with included neutrophil-specific mutants, and indentify common signatures among the 5 groups Overall design: Blood neutrophils from wild-type and mutants were isolated based on Ly6G staining, then standard RNA extraction procedures were performed. Wild-type samples were extracted at ZT5 and ZT13, all other samples at ZT5.

Publication Title

A Neutrophil Timer Coordinates Immune Defense and Vascular Protection.

Sample Metadata Fields

Sex, Specimen part, Cell line, Subject

View Samples
accession-icon SRP114943
Transcriptome of neutrophils deficient in cxcr4 and arntl
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Our study aims to analyze time-dependent changes in neutrophil phenotype Overall design: Blood neutrophils were isolated based on Ly6G staining, then standard RNA extraction procedures were performed. This samples were extracted at ZT13.

Publication Title

A Neutrophil Timer Coordinates Immune Defense and Vascular Protection.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP069812
Transcriptomic analysis of pancreas and kidney upon induction of reprogramming
  • organism-icon Mus musculus
  • sample-icon 30 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We profiled total mRNA of pancreas and kidney tissues of 3 different strains (p53-null; In4a/Arf-null and WT) of reprogrammable mouse lines (they all express OCT4, SOX2, KLF4, C-MYC under the control of a tetracycline promoter, activated by doxycycline) Overall design: 5 mice of each genotype were treated with doxycycline to induce the expression of the reprogramming factors, they were sacrificed and total mRNA was extracted from pancreas and kidney tissues (we mapped >24M reads per sample)

Publication Title

Tissue damage and senescence provide critical signals for cellular reprogramming in vivo.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE37255
Arabidopsis thaliana wild-type and pskr1-5 transcriptome upon the compatible interaction with Hyaloperonospora arabidopsidis
  • organism-icon Arabidopsis thaliana
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

We used Arabidopsis full-genome microarrays to characterize plant transcript accumulations in wild-type plants and pskr1-5 mutants, 3 days after water treatment and inoculation with the biotrophic oomycete downy mildew pathogen, Hyaloperonospora arabidopsidis.

Publication Title

Evolutionarily distant pathogens require the Arabidopsis phytosulfokine signalling pathway to establish disease.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP026364
Transcriptional profiles by deep sequencing (RNA-seq) of in vivo-generated mouse iPSCs, in vitro-generated mouse iPSCs, and mouse ESCs
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

We have generated “reprogrammable” transgenic mice that ubiquitously express the four Yamanaka factors in an inducible manner. Transitory induction of the transgene results in multiple teratomas emerging from a variety of organs, thus indicating that full reprogramming into iPSCs can occur in vivo. By performing bone marrow transplant experiments, we demonstrate that both hematopoietic cells, as well as non-hematopoietic cells can be reprogrammed in vivo. Remarkably, reprogrammable mice also present circulating iPSCs in the bloodstream (in vivo-iPSCs) with all the expected properties of bona fide iPSCs. Moreover, in contrast to in vitro-iPSCs or embryonic stem cells (ESCs), in vivo-iPSCs have an increased capacity to undergo trophectoderm lineage differentiation, which suggests that in vivo-iPSCs are more plastic or primitive than in vitro-generated iPSCs or ESCs. Overall design: 6 clones of in vivo-generated iPSCs, 5 indendent clones of in vitro-generated iPSCs, and 3 clones of established ESCs

Publication Title

Reprogramming in vivo produces teratomas and iPS cells with totipotency features.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE18090
Gene Expression Profiling During Early Acute Febrile Stage of Dengue Infection Can Predict The Disease Outcome
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Background: We report the detailed development of biomarkers to predict the clinical outcome under dengue infection. Transcriptional signatures from purified peripheral blood mononuclear cells were derived from whole-genome gene-expression microarray data and validated by quantitative PCR and tested in independent samples. Methodology/Principal Findings: The study was performed on patients of a well-characterized dengue cohort from Recife, Brazil. The samples analyzed were collected prospectively from acute febrile dengue patients who evolved with different degrees of disease severity, classic dengue fever or dengue hemorrhagic fever (DHF) and compared with similar samples from other non-dengue febrile illnesses. The DHF samples were collected 2-3 days before the presentation of the plasma leakage symptoms. Differentially-expressed genes were selected by univariate statistical tests as well as multivariate classification techniques. The results showed that at early stages of dengue infection, the genes involved in effector mechanisms of innate immune response presented a weaker activation on patients who later developed hemorrhagic fever, whereas the genes involved in apoptosis were expressed in higher levels. Conclusions/Significance: Some of the gene expression signatures displayed estimated accuracy rates of more than 95%, indicating that expression profiling with these signatures may provide a useful means of DHF prognosis at early stages of infection

Publication Title

Gene expression profiling during early acute febrile stage of dengue infection can predict the disease outcome.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon SRP059777
Nuclear Transfer nTreg model reveals fate-determining TCRbeta and peripheral nTreg precursors
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

To study the development and function of “natural-arising” T regulatory (nTreg) cells, we developed a novel nTreg model on pure nonobese diabetic background using epigenetic reprogramming via somatic cell nuclear transfer. On RAG1-deficient background, we found that monoclonal FoxP3+ CD4+ Treg cells developed in the thymus in the absence of other T cells. Adoptive transfer experiments revealed that the thymic niche is not a limiting factor in nTreg development. In addition, we showed that the T-cell receptor (TCR) ß-chain of our nTreg model was not only sufficient to bias T-cell development toward the CD4 lineage, but we also demonstrated that this TCR ß-chain was able to provide stronger TCR signals. This TCR-ß–driven mechanism would thus unify former per se contradicting hypotheses of TCR-dependent and -independent nTreg development. Strikingly, peripheral FoxP3- CD4+ T cells expressing the same TCR as this somatic cell nuclear transfer nTreg model had a reduced capability to differentiate into Th1 cells but were poised to differentiate better into induced nTreg cells, both in vitro and in vivo, representing a novel peripheral precursor subset of nTreg cells to which we refer to as pre-nTreg cells. Overall design: We performed RNA-Seq analysis to determine the transcriptional differences between monoclonal FoxP3GFP-positive and -negative CD4+ T cells from NOD.TCRab.FoxP3GFP.Rag-/- and compared it with polyclonal FoxP3GFP-positive and -negative CD4+ T cells from NOD.FoxP3GFP mice

Publication Title

Nuclear transfer nTreg model reveals fate-determining TCR-β and novel peripheral nTreg precursors.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact