refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 618 results
Sort by

Filters

Technology

Platform

accession-icon GSE10565
Identification of targets of transcription factor Trp63: primary keratinocytes
  • organism-icon Mus musculus
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Direct targets of the TRP63 transcription factor revealed by a combination of gene expression profiling and reverse engineering.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE10562
Induction of ERDNp63a via Tamoxifen in primary keratinocytes
  • organism-icon Mus musculus
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Genome-wide identification of bona fide targets of transcription factors in mammalian cells is still a challenge. We present a novel integrated computational and experimental approach to identify direct targets of a transcription factor. This consists in measuring time-course (dynamic) gene expression profiles upon perturbation of the transcription factor under study, and in applying a novel reverse-engineering algorithm (TSNI) to rank genes according to their probability of being direct targets. Using primary keratinocytes as a model system, we identified novel transcriptional target genes of Trp63, a crucial regulator of skin development. TSNI-predicted Trp63 target genes were validated by Trp63 knockdown and by ChIP-chip to identify Trp63-bound regions in vivo. Our study revealed that short sampling times, in the order of minutes, are needed to capture the dynamics of gene expression in mammalian cells. We show that Trp63 transiently regulates a subset of its direct targets, thus highlighting the importance of considering temporal dynamics when identifying transcriptional targets. Using this approach, we uncovered a previously unsuspected transient regulation of the AP-1 complex by Trp63, through direct regulation of a subset of AP-1 components. The integrated experimental and computational approach described here is readily applicable to other transcription factors in mammalian systems and is complementary to genome-wide identification of transcription factor binding sites.

Publication Title

Direct targets of the TRP63 transcription factor revealed by a combination of gene expression profiling and reverse engineering.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE10563
Primary keratinocytes treated with Tamoxifen
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Genome-wide identification of bona fide targets of transcription factors in mammalian cells is still a challenge. We present a novel integrated computational and experimental approach to identify direct targets of a transcription factor. This consists in measuring time-course (dynamic) gene expression profiles upon perturbation of the transcription factor under study, and in applying a novel reverse-engineering algorithm (TSNI) to rank genes according to their probability of being direct targets. Using primary keratinocytes as a model system, we identified novel transcriptional target genes of Trp63, a crucial regulator of skin development. TSNI-predicted Trp63 target genes were validated by Trp63 knockdown and by ChIP-chip to identify Trp63-bound regions in vivo. Our study revealed that short sampling times, in the order of minutes, are needed to capture the dynamics of gene expression in mammalian cells. We show that Trp63 transiently regulates a subset of its direct targets, thus highlighting the importance of considering temporal dynamics when identifying transcriptional targets. Using this approach, we uncovered a previously unsuspected transient regulation of the AP-1 complex by Trp63, through direct regulation of a subset of AP-1 components. The integrated experimental and computational approach described here is readily applicable to other transcription factors in mammalian systems and is complementary to genome-wide identification of transcription factor binding sites.

Publication Title

Direct targets of the TRP63 transcription factor revealed by a combination of gene expression profiling and reverse engineering.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE10564
Silencing of p63 (trp63) in primary keratinocytes via siRNA oligo transfection.
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Genome-wide identification of bona fide targets of transcription factors in mammalian cells is still a challenge. We present a novel integrated computational and experimental approach to identify direct targets of a transcription factor. This consists in measuring time-course (dynamic) gene expression profiles upon perturbation of the transcription factor under study, and in applying a novel reverse-engineering algorithm (TSNI) to rank genes according to their probability of being direct targets. Using primary keratinocytes as a model system, we identified novel transcriptional target genes of Trp63, a crucial regulator of skin development. TSNI-predicted Trp63 target genes were validated by Trp63 knockdown and by ChIP-chip to identify Trp63-bound regions in vivo. Our study revealed that short sampling times, in the order of minutes, are needed to capture the dynamics of gene expression in mammalian cells. We show that Trp63 transiently regulates a subset of its direct targets, thus highlighting the importance of considering temporal dynamics when identifying transcriptional targets. Using this approach, we uncovered a previously unsuspected transient regulation of the AP-1 complex by Trp63, through direct regulation of a subset of AP-1 components. The integrated experimental and computational approach described here is readily applicable to other transcription factors in mammalian systems and is complementary to genome-wide identification of transcription factor binding sites.

Publication Title

Direct targets of the TRP63 transcription factor revealed by a combination of gene expression profiling and reverse engineering.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE48046
Gene expression analysis of Early immature and Late mature T-ALL cell lines
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Early immature T-cell acute lymphoblastic leukemias (T-ALLs) account for about 5-10% of pediatric T-ALLs and are associated with poor prognosis. However, the genetic defects that drive the biology of these tumors remain largely unknown. Analysis of microarray gene expression signatures in adult T-ALL demonstrated a high prevalence of early immature leukemias and revealed a close relationship between these tumors and myeloid leukemias. Consistently, adult immature T- ALLs showed characteristic mutations in myeloid specific oncogenes and tumor suppressors including IDH1, IDH2, DNMT3A, FLT3 and NRAS. Moreover, we identified ETV6 mutations as a novel genetic lesion uniquely present in immature adult T-ALL. All together, our results demonstrate that early immature adult T- ALL represents a heterogeneous category of leukemias characterized by the presence of overlapping myeloid and T-ALL characteristics and highlight the role of ETV6 mutations in these tumors.

Publication Title

ETV6 mutations in early immature human T cell leukemias.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE12771
Lung cancer prediction
  • organism-icon Homo sapiens
  • sample-icon 242 Downloadable Samples
  • Technology Badge IconIllumina human-6 v1.0 expression beadchip

Description

We generated a blood-derived transcriptional signature that discriminates patients with lung cancer from non-affected smokers. When applied to blood samples from one of the largest prospective population-based cancer studies (the European Prospective Investigation into Cancer and Nutrition), this signature accurately predicted the occurrence of lung cancer in smokers within two years before the onset of clinical symptoms. Such a blood test could be used as a screening tool to enable early diagnosis of lung cancer at a curable stage.

Publication Title

Blood-based gene expression signatures in non-small cell lung cancer.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE12211
Gene expression of CML CD34+ cells during Imatinib therapy
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Imatinib has become the current standard therapy for patients with chronic myelogenous leukaemia (CML). For a better understanding of the Imatinib-related molecular effects in vivo, we assessed gene expression profiles of Philadelphia Chromosome positive (Ph+) CD34+ cells from peripheral blood of 6 patients with de novo CML in chronic phase. After 7 days of treatment with Imatinib the Ph+ CD34+ cells were reassessed to look for changes in the transcriptome. The expression level of 303 genes was significantly different comparing the transcriptome of the Ph+ CD34+ cells before and after 7 days of Imatinib therapy (183 down-regulated, 120 up-regulated, lower bound 1.2-fold). For a substantial number of genes governing cell cycle and DNA replication, the level of expression significantly decreased (CDC2, RRM2, PCNA, MCM4). On the other hand, therapy with Imatinib was associated with an increase of genes related to adhesive interactions, such as L-selectin or CD44. A group of 8 genes with differential expression levels were confirmed using a gene specific quantitative real-time PCR. Thus, during the first week of treatment, Imatinib is preferentially counteracting the bcr-abl induced effects related to a disturbed cell cycle and defective adhesion of leukemic Ph+ CD34+ cells.

Publication Title

Early in vivo changes of the transcriptome in Philadelphia chromosome-positive CD34+ cells from patients with chronic myelogenous leukaemia following imatinib therapy.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE104197
Trabectedin is a novel chemotherapy agent for diffuse large B cell lymphoma
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Assess the efficacy of trabectedin in two DLBCL cell lines

Publication Title

Trabectedin is a novel chemotherapy agent for diffuse large B cell lymphoma.

Sample Metadata Fields

Treatment, Time

View Samples
accession-icon SRP077927
An inducible and reversible embryonic stem cell biobank reveals functional genomic pathways and disease targets [RNA-Seq]
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Clonal cellular variance often confounds reproducibility of forward and reverse genetic studies. We developed combinatorial approaches for whole genome saturated mutagenesis using haploid murine ES cells to permit induction and reversion of genetic mutations. Using these systems, we created a biobank with over 100000 individual ES cell lines with repairable and genetically bar coded mutations targeting 16950 genes. This biobank termed “Haplobank” is freely available. In addition, we developed a genetic color coding system for rapid repair of mutations and direct functional validation in sister clones. Using this system, we report functional validation of essential ES cell genes. We also identified phospholipase16G as a key pathway for cytotoxicity of human rhinoviruses, the most frequent cause of the common cold. Moreover, we derived 3D blood vessel organoids from haploid ES cells, combining conditional mutagenesis in haploid ES cells with tissue engineering. We identified multiple novel genes, such as Connexin43/Gja1, in blood vessel formation and tip cell specification in vitro and also in vivo. Taken together, we develop a conditional homozygous ES cell resource for the community to empower controlled genetic studies in murine ES cells and tissues derived from it. Overall design: RNA-Seq was carried out using standard protocols. https://www.haplobank.at/ecommerce/control/haplobank_resource

Publication Title

Comparative glycoproteomics of stem cells identifies new players in ricin toxicity.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE41405
Genes affected by Ret activation during estrogen stimulation or inhibition in MCF7/Aro cells
  • organism-icon Homo sapiens
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Endocrine therapy is the main therapeutic option for patients with estrogen receptor alpha positive (ER+) breast cancer. Nevertheless, most of them become estrogen-independent and relapse after the treatment. Ret is a tyrosine kinase receptor that shows elevated expression levels in ER+ human breast tumors. In this study, we demonstrate that activation of the Ret receptor promotes proliferation as well as cell migration irrespective of endocrine therapy. Microarray data show that Ret activation involves changes in the expression of inflammatory- and motility-related genes. In vivo treatment with a Ret pathway inhibitor in a ER+/Ret+ mouse mammary cancer model, reduces tumor growth and lung metastasis even after endocrine therapy. Additionally, we show a connection between Ret and inflammatory pathways. The pro-inflamatory cytokine IL6 lies at the core of this regulation, which involves a positive feedback loop with IL6 and the Ret pathway reciprocally stimulating each other to further leading metastasis risk. Our findings provide insight into endocrine resistance mechanism and point at the Ret pathway as a potential target for future therapies.

Publication Title

Ret inhibition decreases growth and metastatic potential of estrogen receptor positive breast cancer cells.

Sample Metadata Fields

Cell line, Treatment, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact