refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 527 results
Sort by

Filters

Technology

Platform

accession-icon GSE53163
Expression data from human monocyte-derived dendritic cells treated or not with interleukin 17A (IL-17A)
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

IL-17A is a pro-inflammatory cytokine that promotes host defense against infections and contributes to the pathogenesis of chronic inflammatory diseases. Dendritic cells (DC) are antigen-presenting cells responsible for adaptive immune responses. Here, we report that IL-17A induces intense remodeling of lipid metabolism in human monocyte-derived DC, as revealed by microarrays analysis. In particular NR1H3/LXR-a and its target genes were significantly upregulated in response to IL-17A. IL-17A induced accumulation of Oil Red O-positive lipid droplets in DC leading to the generation of lipid-laden DC. A lipidomic study established that all the analyzed lipid species, i.e phospholipids, cholesterol, triglycerides, cholesteryl esters were elevated in IL-17A-treated DC. The increased expression of membrane lipid transporters in IL-17A-treated DC as well as their enhanced ability to uptake the fatty acid Bodipy-FL-C16 suggested that lipid uptake was the main mechanism responsible for lipid accumulation in response to IL-17A. IL-17A-induced lipid laden DC were able to stimulate allogeneic T cell proliferation in vitro as efficiently as untreated DC, indicating that IL-17A-treated DC are potently immunogenic. This study, encompassed in the field of immunometabolism, points out for the first time IL-17A as a modulator of lipid metabolism in DC and provides a rationale to delineate the importance of lipid-laden DC in IL-17A-related inflammatory diseases.

Publication Title

Human monocyte-derived dendritic cells turn into foamy dendritic cells with IL-17A.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon SRP018707
Transcriptome along the murine developing gut
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Hox genes are required for the development of the intestinal caecum, a major organ of species eating plants. We have analysed the transcriptional regulation of Hoxd genes in caecal buds and show that they are controlled by a series of enhancers located in a gene desert telomeric to the HoxD cluster. The start site of two neighboring and opposite long non-coding RNAs, Hotdog and Twin of Hotdog, specifically transcribed in the caecum, contacts the expressed Hoxd genes in the framework of a topological domain, a large domain of interactions, which ensures a robust transcription of these genes during caecum budding. We show that hedgehogs have kept this regulatory potential despite the absence of caecum, suggesting that these enhancers are used in other developmental situations. In this context, we discuss some striking similarities between the caecum and the limb buds, suggesting the implementation of a common budding tool-kit. Overall design: Transcriptional activity at the HoxD locus in the murine developing gut at E13, Differential gene expression analysis along the murine developing gut

Publication Title

Multiple enhancers regulate Hoxd genes and the Hotdog LncRNA during cecum budding.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP018708
Transcriptome in developing caeca
  • organism-icon Mus musculus
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIllumina Genome Analyzer II

Description

Hox genes are required for the development of the intestinal caecum, a major organ of species eating plants. We have analysed the transcriptional regulation of Hoxd genes in caecal buds and show that they are controlled by a series of enhancers located in a gene desert telomeric to the HoxD cluster. The start site of two neighboring and opposite long non-coding RNAs, Hotdog and Twin of Hotdog, specifically transcribed in the caecum, contacts the expressed Hoxd genes in the framework of a topological domain, a large domain of interactions, which ensures a robust transcription of these genes during caecum budding. We show that hedgehogs have kept this regulatory potential despite the absence of caecum, suggesting that these enhancers are used in other developmental situations. In this context, we discuss some striking similarities between the caecum and the limb buds, suggesting the implementation of a common budding tool-kit. Transcriptional activity at the HoxD locus in developing caeca at E13.5 Overall design: Transcriptional activity at the HoxD locus in developing caeca at E13.5

Publication Title

Multiple enhancers regulate Hoxd genes and the Hotdog LncRNA during cecum budding.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE111865
Gene expression Analysis of wild type (WT) and Blnc1 adipose specific transgenic mice (Tg) epididymal WAT (eWAT) Transcriptomes after 21 weeks high fat diet (HFD) feeding
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.1 ST Array (mogene21st)

Description

Long noncoding RNAs (lncRNAs) are emerging as powerful regulators of adipocyte differentiation and gene expression. However, their physiological role in adipose tissue biology and systemic energy metabolism has not been established. Here we show that adipose tissue expression of Blnc1, a conserved lncRNA regulator of thermogenic genes, is highly induced in obese mice. Fat-specific inactivation of Blnc1 impairs cold-induced thermogenesis and browning, exacerbates obesity-associated brown fat whitening, and worsens adipose tissue inflammation and fibrosis, leading to more severe insulin resistance and hepatic steatosis. On the contrary, transgenic expression of Blnc1 in adipose tissue elicits the opposite and beneficial metabolic effects, supporting a critical role of Blnc1 in driving adipose adaptation during obesity. Mechanistically, Blnc1 cell-autonomously attenuates proinflammatory cytokine signaling and promotes fuel storage in adipocytes through its protein partner Zbtb7b. This study illustrates a surprisingly pleiotropic and dominant role of lncRNA in driving adaptive adipose tissue remodeling and preserving metabolic health.

Publication Title

The long noncoding RNA Blnc1 orchestrates homeostatic adipose tissue remodeling to preserve metabolic health.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment

View Samples
accession-icon GSE85846
Adipose tissue stromal cells from lean, obese, and formerly obese mice
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.1 ST Array (mogene21st)

Description

Adipose tissue stromal cells contribute to the regulation of adipose tissue in lean and obese states. Myeloid cells such as adipose tissue macrophages (ATMs) and dendritic cells (ATDCs) undergo both quantitative and qualitative changes with obesity. Due to similarity in markers the identify of adipose tissue dendritic cells and macrophages has been elusive. We have refined prior protocols to unambiguously discern ATM and ATDC in mice. We used microarrays to compare the profiles of ATMs and ATDC from gonadal adipose tissue from lean, obese, and formerly obese mice. We also isolated preadipocytes (PA) from lean and obese mice for comparison.

Publication Title

Adipose Tissue Dendritic Cells Are Independent Contributors to Obesity-Induced Inflammation and Insulin Resistance.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE12584
Microarray analysis of the interaction between Rhopalosiphum padi and partially resistant or susceptible barley lines
  • organism-icon Hordeum vulgare, Hordeum vulgare subsp. spontaneum
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Barley Genome Array (barley1)

Description

The bird cherry-oat aphid (Rhopalosiphum padi L.) (Homoptera: Aphididae) is an important pest on cereals causing plant growth reduction but no specific leaf symptoms. Breeding of barley (Hordeum vulgare L.) for R. padi resistance shows that there are several resistance genes involved, reducing aphid growth. In an attempt to identify candidate sequences for resistance-related genes, we performed a microarray analysis of gene expression after two days of aphid infestation in two susceptible barley lines and two genotypes with partial resistance. One of the four lines is a descendant of two of the other genotypes. The analysis revealed large differences in gene induction between the four lines, indicating substantial variation in response even between closely related genotypes. Genes induced in the aphid-infested tissue were mainly related to defence, primary metabolism and signalling. Only twenty-four genes were induced in all lines, none of them related to oxidative stress or secondary metabolism. Few genes were down-regulated and none of those was common to all four lines. There were differences in aphid-induced gene regulation between resistant and susceptible lines, and results from control plants without aphids also revealed differences in constitutive gene expression between the two types of lines. Candidate sequences for both induced and constitutive resistance factors have been identified, among them a proteinase inhibitor, a Ser/Thr kinase and several thionins.

Publication Title

Microarray analysis of the interaction between the aphid Rhopalosiphum padi and host plants reveals both differences and similarities between susceptible and partially resistant barley lines.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE7007
Ewing samples and EWS-FLI-1 inhibited Ewing cell lines
  • organism-icon Homo sapiens
  • sample-icon 39 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

The cellular origin of Ewing tumor (ET), a tumor of bone or soft tissues characterized by specific fusions between EWS and ETS genes, is highly debated. Through gene expression analysis comparing ETs with a variety of normal tissues, we show that the profiles of different EWS-FLI1-silenced Ewing cell lines converge toward that of mesenchymal stem cells (MSC). Moreover, upon EWS-FLI1 silencing, two different Ewing cell lines can differentiate along the adipogenic lineage when incubated in appropriate differentiation cocktails. In addition, Ewing cells can also differentiate along the osteogenic lineage upon long-term inhibition of EWS-FLI1. These in silico and experimental data strongly suggest that the inhibition of EWS-FLI1 may allow Ewing cells to recover the phenotype of their MSC progenitor.

Publication Title

Mesenchymal stem cell features of Ewing tumors.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE137985
Mouse limb and respiratory muscle show distinct cachexia profiles in response to human pancreatic tumors
  • organism-icon Mus musculus
  • sample-icon 50 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Distinct cachexia profiles in response to human pancreatic tumours in mouse limb and respiratory muscle.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE137979
Mouse limb and respiratory muscle show distinct cachexia profiles in response to human pancreatic tumors II
  • organism-icon Mus musculus
  • sample-icon 50 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Background: Cancer cachexia is a life-threatening metabolic syndrome that causes significant loss of skeletal muscle mass and significantly increases mortality in cancer patients. Currently, there is an urgent need for better understanding of the molecular pathophysiology of this disease, so that effective therapies can be developed. Almost all pre-clinical studies evaluating skeletal muscle’s response to cancer have focused on one or two pre-clinical models, and almost all have focused specifically on limb muscles. In the current study, we reveal key differences in the histology and transcriptomic signatures of a limb muscle and a respiratory muscle in orthotopic pancreatic cancer patient-derived xenograft (PDX) mice. Methods: To create the four cohorts of PDX mice evaluated in this study, tumors resected from four pancreatic ductal adenocarcinoma (PDAC) patients were portioned and attached to the pancreas of immunodeficient NSG mice. Results: Body weight, muscle mass, and fat mass were significantly decreased in each PDX line. Histological assessment of cryosections taken from the tibialis anterior (TA) and diaphragm (DIA) revealed differential effects of tumor-burden on their morphology. Subsequent genome-wide microarray analysis on TA and DIA revealed key differences between their transcriptomes in response to cancer as well. Indeed, upregulated genes in the diaphragm were enriched for extracellular matrix (ECM) protein-encoding genes and genes related to the inflammatory response, and downregulated genes were enriched for mitochondria related protein-encoding genes. Conversely, the TA showed upregulation of canonical atrophy-associated pathways such as ubiquitin-mediated protein degradation and apoptosis and enrichment of downregulated genes encoding ECM proteins. Conclusions: These data suggest that distinct biological processes account for wasting in different skeletal muscles in response to the same tumor burden. Further investigation into these differences will be critical for the future development of effective clinical strategies to counter cancer cachexia.

Publication Title

Distinct cachexia profiles in response to human pancreatic tumours in mouse limb and respiratory muscle.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE16223
Prionic protein gene dosage is critical for maintenance of neuronal homeostasis of hippocampal circuits
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina mouse-6 v1.1 expression beadchip

Description

We demonstrate that Prnp dosage is critical for the maintenance of neuronal homeostasis since both its absence and, more relevantly, its overexpression induce higher sensitivity to kainate (KA) damage. These data correlate with electrophysiological results in freely behaving mutant mice showing an imbalance in activity-dependent synaptic processes, as determined from input/output curves, paired-pulse facilitation, and LTP studies. Gene expression profiling showed that 129 genes involved in canonical pathways such as Ubiquitination or Neurotransmission among others were co-regulated in knockout and PrPc overexpressing mice. RT-qPCR analysis of neurotransmission-related genes confirmed GABA-A and AMPA-Kainate receptor subunit transcriptional co-regulation in both Prnp -/- and Tg20 mice. Our results demonstrate that PrPc is necessary for the proper homeostatic functioning of hippocampal circuits, because of its interactions with GABAA and AMPA-Kainate receptors.

Publication Title

Regulation of GABA(A) and glutamate receptor expression, synaptic facilitation and long-term potentiation in the hippocampus of prion mutant mice.

Sample Metadata Fields

Sex

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact