refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 618 results
Sort by

Filters

Technology

Platform

accession-icon SRP096825
ENPP1 Mutation Causes Recessive Cole Disease by Altering Melanogenesis
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Propose: We used next-generation RNA sequencing (RNA-seq) to characterize the transcriptional changes in primary human melanocytes during recessive Cole disease. Our patient carried missense mutation in the ENPP1 gene (c.358T>C; p.C120R). RNA-seq was performed using mRNA extracted from primary hypo- and hyper-pigmented melanocytes isolated from affected patient and melanocytes from his healthy heterozygous sibling and an aged- and ethnicity-matched control. Results: A pairwise fold-change comparison was performed and genes were computationally filtered using a cutoff of more than 2 fold change and P<0.01. We first compared hyper-pigmented melanocytes to each control individually and then overlapped the results to obtain a list of 1041 up-regulated and 692 down-regulated genes. The same analysis was done for hypo-pigmented melanocytes to found that 535 genes were up-regulated and 520 were down-regulated. Finally, to obtain a profile of the overall differential gene expression, down-regulated genes in hyper and hypo-pigmented cells were overlapped to identify 143 genes that were down-regulated in patient melanocytes compared to controls regardless of pigmentation status. Similar analysis was performed to obtain the list of 172 up-regulated genes. We selected 36 deregulated genes, most of which were associated with melanocyte development and pigmentation signaling pathways, and validated 32 of them by Q-PCR, indicating that our RNA-Seq data was accurate and reliable. Conclusion: Our study represents the first analysis of hypo- and hyper-pigmented primary melanocytes isolated from affected patient versus healthy controls in recessive Cole disese pathology. Overall design: mRNA profiles of hyper- and hypo-pigmented mutant melanocytes, heterozygous and wild type melanocytes were sequenced in triplicate on the Hiseq 2500 High output 100PE

Publication Title

ENPP1 Mutation Causes Recessive Cole Disease by Altering Melanogenesis.

Sample Metadata Fields

Sex, Age, Specimen part, Subject

View Samples
accession-icon SRP150218
Light releases the TCP4-SAUR16/50 transcription module from the repression of PIF3 to facilitate cotyledon opening during de-etiolation [RNA-seq]
  • organism-icon Arabidopsis thaliana
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Etiolated Arabidopsis seedlings open their cotyledons and halt rapid elongation of hypocotyl when exposed to light (de-etiolation). Major light responsive components in this process have been identified and signaling pathways revealed, yet how the organ-specific light responses are achieved remains unknown. Here we report that a developmental regulator TCP4 (TEOSINTE BRANCHED1, CYCLOIDEA, and PCF) participates in photomorphogenesis and facilitates light-induced cotyledon-opening. We demonstrate that TCP4-like transcriptional factors, which predominantly express in cotyledons of both light and dark seedlings, activate SAUR16 and SAUR50 in response to light. Light repressor PIF3 (or PIFs, phytochrome-interacting factors), which accumulates in etiolated seedlings and rapidly declines upon light exposure, inhibits TCP4 promoter-binding and prevents activation of SAUR16/50 in darkness. Our study reveals how an interplay between light responsive factors and developmental regulators leads to signal-dependent and tissue-specific regulation of gene expressions, which ultimately resulted in organ-specific light responses during de-etiolation. Overall design: Cotyledon mRNA profiles of 4-day-old dark grown Col, mTCP4#4 and mTCP4#10 seedlings were generated by deep sequencing.

Publication Title

The Transcription Factors TCP4 and PIF3 Antagonistically Regulate Organ-Specific Light Induction of <i>SAUR</i> Genes to Modulate Cotyledon Opening during De-Etiolation in Arabidopsis.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE3990
roX RNAs are required for up-regulation of male X chromosome in Drosophila.
  • organism-icon Drosophila melanogaster
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Drosophila males double transcription of their single X chromosome to equalize X-linked gene expression with females, which carry two X chromosomes. Increased transcription requires the Male-Specific Lethal (MSL) complex. One of the primary functions of the MSL complex is thought to be enrichment of H4Ac16 on the male X chromosome, a modification linked to elevated transcription. The roX1 and roX2 RNAs are essential but redundant components of the MSL complex. Simultaneous removal of both roX RNAs reduces MSL X-localization and leads to ectopic binding of these proteins at autosomal sites and to the chromocenter. Some H4Ac16 accumulates at these ectopic sites in roX1- roX2- males, suggesting the possibility of increased expression. The global effect of roX mutations on gene expression was measured by microarray analysis. We found that expression of the X chromosome was decreased by 26% in roX1- roX2- male larvae, supporting the involvement of roX RNAs in the up-regulation of X-linked genes. This finding is broadly comparable to reports of reduced X chromosome expression following msl2 RNAi knockdown in S2 cells. In spite of strong MSL binding and H4Ac16 accumulation at autosomal sites in roX1- roX2- males, enhanced gene expression could not be detected at these sites by microarray analysis or reverse northern blotting. Thus, failure to compensate X-linked genes, rather than inappropriate up-regulation of autosomal genes at ectopic sites of MSL binding, appears to cause male lethality upon loss of roX RNAs.

Publication Title

roX RNAs are required for increased expression of X-linked genes in Drosophila melanogaster males.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE2077
Gene expression in Cryptosporidium parvum-infected human ileocecal adenocarcinoma cells (HCT-8)
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U95 Version 2 Array (hgu95av2)

Description

The origin of biological samples (In vitro infection of HCT-8 cells with Cryptosporidium parvum)

Publication Title

Cryptosporidium parvum regulation of human epithelial cell gene expression.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE10643
Transcription profiling of Arabidopsis dor mutant and wild-type plants in response to drought stress.
  • organism-icon Arabidopsis thaliana
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

ATH1 GeneChip was used for gene expression analysis of wild-type plants and dor mutant under drought treatment (both the wild-type and dor plants were grown under normal watering conditions for 24 days and then stressed by completely depriving of irrigation for 10 days). Two biological repeat experiments were conducted and the raw data was analyzed applying Affymetrix GCOS software.

Publication Title

F-box protein DOR functions as a novel inhibitory factor for abscisic acid-induced stomatal closure under drought stress in Arabidopsis,.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP188245
CDKN2A-specific probe captured RNA-sequencing (RNACap-Seq) (HEK293T MCF7)
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The CDKN2A/B locus at 9p21.3 contains crucial tumor suppressors (P16, P14, and P15) and oncogenic lncRNA ANRIL genes. This locus is most frequently inactivated in cancer genomes by deletion and DNA methylation. However, the mechanisms coordinately regulating their expression level are far from clear. In the present study, a novel lncRNA, P14AS, was characterized in the antisense strand of the fragment near CDKN2A in human cell lines using CDKN2A-specific probe captured RNA-sequencing (RNACap-Seq). Overall design: RNAs were characterized in the antisense strand of the fragment near CDKN2A in human cell lines using CDKN2A-specific probe captured RNA-sequencing (RNACap-Seq).

Publication Title

Characterization of novel LncRNA P14AS as a protector of ANRIL through AUF1 binding in human cells.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP020490
Single-cell RNA-Seq reveals dynamic, random monoallelic gene expression in mammalian cells
  • organism-icon Mus musculus
  • sample-icon 293 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

In the diploid genome, genes come in two copies, which can have different DNA sequence and where one is maternal and one is paternal. In a particular cell, a gene could potentially be expressed from both copies (biallelic expression) or only one (monoallelic). We performed RNA-Sequencing on individual cells, from zygote to the cells of the late blastocyst, and also individual cells from the adult liver. Using first generation crosses between two distantly related mouse strains, CAST/Ei and C57BL/6, we determined the expression separately from the maternal and paternal alleles. We found that half of the genes were expressed by only one allele, randomly so that some cells would express the paternal allele, some the maternal and a few cell both alleles. We also observed the spread of the progressive inactivation of the paternal X chromosome. Overall design: First generation mouse strain crosses were used to study monoallelic expression on the single cell level

Publication Title

Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP040442
Next Generation Sequencing identifying the dosage compensation state in human endometrial carcinoma and adjacent tissues
  • organism-icon Homo sapiens
  • sample-icon 36 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Mammals have evolved an XY sex chromosome system, resulting in dosage imbalance not only between sexes, but also between X-chromosome and autosome. Overall design: mRNA profiles of 9 pairs of human endometrial carcinoma and adjacent tissues were generated by Illumina 100-nucleotide paired-end sequencing

Publication Title

Identification of chimeric TSNAX-DISC1 resulting from intergenic splicing in endometrial carcinoma through high-throughput RNA sequencing.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE27988
genome-wide gene expression profiling of rice pollen in defferent developmetn stages
  • organism-icon Oryza sativa
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Rice Genome Array (rice)

Description

Pollen development from the microspore involves a series of coordinated cellular events, and the resultant mature pollen is specialized in function that it can quickly germinate and produces a polar-growth pollen tube derived from the vegetative cell to deliver two sperms for fertilization. Understanding the molecular program underlying pollen development and germination still remains a major challenge for plant biology. We used Affymetrix GeneChip Rice Genome Array to comprehensively analyzed the dynamic changes in the transcriptomes of rice pollen at five sequential developmental stages from microspores to germinated pollen. Among the 51,279 transcripts on the array, we found 25,062 pollen-preferential transcripts, among which 2,203 were development stage-enriched. The diversity of transcripts decreased greatly from microspores to mature and germinated pollen, whereas the number of stage-enriched transcripts displayed a U-type change, with the lowest at the bicellular pollen stage; and a transition of overrepresented stage-enriched transcript groups associated with different functional categories, which indicates a shift in gene expression program at the bicellular pollen stage. About 54% of the now-annotated rice F-box protein genes were expressed preferentially in pollen. The transcriptome profile of germinated pollen was significantly and positively correlated with that of mature pollen. Analysis of expression profiles and coexpressed features of the pollen-preferential transcripts related to cell cycle, transcription, the ubiquitin/26S proteasome system, phytohormone signalling, the kinase system and defense/stress response revealed five expression patterns, which are compatible with changes in major cellular events during pollen development and germination. A comparison of pollen transcriptomes between rice and Arabidopsis revealed that 56.6% of the rice pollen preferential genes had homologs in Arabidopsis genome, but 63.4% of these homologs were expressed, with a small proportion being expressed preferentially, in Arabidopsis pollen. Rice and Arabidopsis pollen had non-conservative transcription factors each. These results supply novel insights into the molecular program and key components of the regulatory network regulating pollen development and germination.

Publication Title

Genome-scale analysis and comparison of gene expression profiles in developing and germinated pollen in Oryza sativa.

Sample Metadata Fields

Disease

View Samples
accession-icon GSE45034
Expression data from mouse ES cells after control RNAi (scramble siRNAs) or RNAi specific for Kdm6a treatment.
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

To address the functional role of KDM6A in the regulation of Rhox genes, male and female mouse ES cells were transfected with a mixture of three small interfering RNA duplexes, each of which targets a different region of Kdm6a mRNA. We found that Kdm6a knockdown in mouse ES cells caused a decrease in expression of a subset of Rhox genes, Rhox6 and 9. Furthermore, Rhox6 and 9 expression was decreased in female ES cells but not male ES cells indicating that KDM6A regulates Rhox gene expression in a sexually dimorphic manner.

Publication Title

Female bias in Rhox6 and 9 regulation by the histone demethylase KDM6A.

Sample Metadata Fields

Specimen part, Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact