refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 349 results
Sort by

Filters

Technology

Platform

accession-icon GSE72140
Transcriptional profiling shows altered expression of wnt pathway- and lipid metabolism-related genes as well as melanogenesis-related genes in melasma.
  • organism-icon Homo sapiens
  • sample-icon 48 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Melasma is a commonly acquired hyperpigmentary disorder of the face, but its pathogenesis is poorly understood and its treatment remains challenging. We conducted a comparative histological study on lesional and perilesional normal skin to clarify the histological nature of melasma. Significantly, higher amounts of melanin and of melanogenesis-associated proteins were observed in the epidermis of lesional skin, and the mRNA level of tyrosinase-related protein 1 was higher in lesional skin, indicating regulation at the mRNA level. However, melanocyte numbers were comparable between lesional and perilesional skin. A transcriptomic study was undertaken to identify genes involved in the pathology of melasma. A total of 279 genes were found to be differentially expressed in lesional and perilesional skin. As was expected, the mRNA levels of a number of known melanogenesis-associated genes, such as tyrosinase, were found to be elevated in lesional skin. Bioinformatics analysis revealed that the most lipid metabolism-associated genes were downregulated in lesional skin, and this finding was supported by an impaired barrier function in melasma. Interestingly, a subset of Wnt signaling modulators, including Wnt inhibitory factor 1, secreted frizzled-related protein 2, and Wnt5a, were also found to be upregulated in lesional skin. Immunohistochemistry confirmed the higher expression of these factors in melasma lesions.

Publication Title

Transcriptional profiling shows altered expression of wnt pathway- and lipid metabolism-related genes as well as melanogenesis-related genes in melasma.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE36876
affy_cotton_2011_12 - Comparative transcriptional profiling of cotton fibers in Gossypium hirsutum and Gossypium barbadense using EST pyrosequencing and microarray hybridization
  • organism-icon Gossypium barbadense, Gossypium hirsutum
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Cotton Genome Array (cotton)

Description

affy_cotton_2011_12 - affy_cotton_2011_12 - In this study we characterized the fiber transcriptomes of the two species, Gossypium hirsutum and Gossypium barbadense that were parental genotypes of a RIL mapping population used previously for phenotypic QTL and expression QTL mapping., We used 454 deep pyrosequencing to characterize cDNAs from developing fibers at two key developmental time-points; 10 and 22 days post anthesis. A unigene set was assembled and annotated, and differential digital gene expression was assessed from the different time-point and genotype representations of the reads within assembled contigs. As a complementary approach, we conducted microarray-based hybridization profiling using the cotton Affymetrix gene chip and labeled cDNAs from fibers at 11 dpa and for the same two genotypes and compared differentially expressed genes identified by the two platforms. The 454 unigenes were also mined for the presence of microsatellite repeats and SNPs that will be useful markers for mapping and marker-assisted selection in cotton improvement.-Total RNA was extracted from 11 dpa-old fibers from the two genotypes, Guazuncho 2 (Gossypium hirsutum) and VH8-4602 (G. barbadense), and included two replicates of each. RNA was checked for quality and quantity using an Agilent Bioanalyser 2100 (Agilent Technologies, Santa Clara, CA, USA, http://www.home.agilent.com) following the manufacturers recommendations. The RNA was sent to the Australian Genome Research Facility Ltd. (http://www.agrf.org.au, Melbourne, Victoria, Australia) for labeling and hybridization to the Affymetrix Genechip Cotton Genome Array (21,854 genes) (Affymetrix, http://www.affymetrix.com/). -

Publication Title

Deep sequencing reveals differences in the transcriptional landscapes of fibers from two cultivated species of cotton.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE39159
Skeletal muscle gene expression data from Down syndrome mice
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Persons with Down syndrome (DS) exhibit low muscle strength that significantly impairs their physical functioning. The Ts65Dn mouse model of DS also exhibits muscle weakness in vivo and may serve as a useful model to examine potential factors responsible for DS-associated muscle dysfunction. Therefore, the purpose of this experiment was to directly assess skeletal muscle function in the Ts65Dn mouse and to reveal potential mechanisms of DS-associated muscle weakness. Soleus muscles were harvested from anesthetized male Ts65Dn and wild-type (WT) colony controls. In vitro muscle contractile experiments revealed normal force generation of unfatigued Ts65Dn soleus, but a 12% reduction in force was observed in Ts65Dn muscle during recovery following fatiguing contractions compared to WT muscle (p<0.05). Oxidative stress may contribute to DS-related pathologies, including muscle weakness, which may be the result of overexpression of chromosome 21 genes (e.g., copper-zinc superoxide dismutase (SOD1)). SOD1 expression was 25% higher (p<0.05) in Ts65Dn soleus compared to WT muscle but levels of other antioxidant proteins were unchanged. Lipid peroxidation (4-hydroxynoneal) was unaltered in Ts65Dn muscle although protein carbonyls were 20% greater compared to muscle of WT animals (p<0.05). Cytochrome c oxidase expression was reduced 22% in Ts65Dn muscle, suggesting a limitation in mitochondrial function may contribute to post-fatigue muscle weakness. Microarray analysis of Ts65Dn soleus revealed alteration of numerous cellular pathways including: proteolysis, glucose and fat metabolism, neuromuscular transmission, and ATP biosynthesis. In summary, the Ts65Dn mouse displays evidence of muscle dysfunction, and the potential role of mitochondria and oxidative stress warrants further investigation.

Publication Title

Functional and biochemical characterization of soleus muscle in Down syndrome mice: insight into the muscle dysfunction seen in the human condition.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon SRP176108
Two distinct ontogenies confer heterogeneity to mouse brain microglia
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Hoxb8 mutant mice show compulsive behavior similar to trichotillomania, a human obsessive-compulsive-spectrum disorder. The only Hoxb8 lineage-labeled cells in the brains of mice are microglia, suggesting that defective Hoxb8 microglia caused the disorder. What is the source of the Hoxb8 microglia? It has been posited that all microglia progenitors arise at embryonic day (E) 7.5 during yolk sac hematopoiesis, and colonize the brain at E9.5. In contrast, we show the presence of two microglia subpopulations: canonical, non-Hoxb8 microglia and Hoxb8 microglia. Unlike non- Hoxb8 microglia, Hoxb8 microglia progenitors appear to be generated during the second wave of yolk sac hematopoiesis, then detected in the aorto-gonad-mesonephros (AGM) and fetal liver, where they are greatly expanded, prior to infiltrating the E12.5 brain. Further, we demonstrate that Hoxb8 hematopoietic progenitor cells taken from fetal liver are competent to give rise to microglia in vivo. Although the two microglial subpopulations are very similar molecularly, and in their response to brain injury and participation in synaptic pruning, they show distinct brain distributions which might contribute to pathological specificity. Non-Hoxb8 microglia significantly outnumber Hoxb8 microglia, but they cannot compensate for the loss of Hoxb8 function in Hoxb8 microglia, suggesting further crucial differences between the two subpopulations. Overall design: Green (non-Hoxb8, control) and yellow (Hoxb8, experimental) microglia data sets

Publication Title

Correction: Two distinct ontogenies confer heterogeneity to mouse brain microglia (doi: 10.1242/dev.152306).

Sample Metadata Fields

Age, Specimen part, Cell line, Subject

View Samples
accession-icon GSE7019
Total RNA from EPC derived microvescicles
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconSentrix Human-6 Expression BeadChip

Description

mRNA present in EPC derived microvescicles were detected using a RNA quantity curve, in order to evaluate if these vescicles were shuttling a specific subset of mRNAs

Publication Title

Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE57720
Ingestion of Cryptococcus neoformans by macrophages damages multiple host cellular processes
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Human infection with Cryptococcus neoformans (Cn), a prevalent fungal pathogen, occurs by inhalation and deposition in the lung alveoli of infectious particles. The subsequent host pathogen interaction is multifactorial and can result either in eradication, latency or extra-pulmonary dissemination. Successful control of Cn infection is dependent on host macrophages as shown by numerous studies. However in vitro macrophages display little ability to kill Cn. Recently, we reported that ingestion of Cn by macrophages induces early cell cycle progression that is subsequently followed by mitotic arrest, an event that almost certainly reflects damage to the host cell. The goal of the present work was to understand macrophage pathways affected by Cn toxicity. Infection of J774.16 macrophage-like cell line macrophages by Cn in vitro was associated with changes in gene pattern expression. Concomitantly we observed depolarization of macrophage mitochondria and alterations in protein translation rate. Our results indicate that Cn infection impairs multiple host cellular functions. Therefore we conclude Cn intracellular residence in macrophages undermines the health of these critical phagocytic cells interfering with their ability to clear the fungal pathogen.

Publication Title

Macrophage mitochondrial and stress response to ingestion of Cryptococcus neoformans.

Sample Metadata Fields

Specimen part, Cell line, Time

View Samples
accession-icon GSE15569
Human liver stem cells-derived microvesicles accelerate hepatic regeneration in partially hepatectomized rats
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HumanWG-6 v3.0 expression beadchip

Description

Several studies indicate that adult stem cells may improve the recovery from acute tissue injury. It has been suggested that they may contribute to tissue regeneration by the release of paracrine factors promoting proliferation of tissue resident cells. However, the factors involved remain unknown. In the present study we found that microvesicles (MV) derived from human liver stem cells (HLSC) were able to stimulate in vitro proliferation and apoptosis resistance of human and rat hepatocytes. These effects required internalization of MV in the hepatocytes by an alpha4 integrin-dependent mechanism. However, when treated with RNase, MV despites their internalization were unable to induce hepatocyte proliferation and apoptosis resistance, suggesting an RNA dependent effect. Microarray analysis and quantitative RT-PCR demonstrated that MV were shuttling a specific subset of cellular mRNA, such as mRNA associated in the control of transcription, translation, proliferation and apoptosis. When administered in vivo, MV were found to accelerate the morphological and functional recovery of liver in a model of 70% hepatectomy in rats by inducing an hepatocytes proliferation that was abolished by RNase treatment. Using human AGO2 gene, which is shuttled by MV, as a reporter gene, we found the expression of human AGO2 mRNA and protein in the liver of hepatectomized rats treated with MV. This suggest a translation of the MV shuttled mRNA within hepatocytes of treated rats. Conclusion: these results suggest that MV derived from HLSC may activate a proliferative program in remnant hepatocytes after hepatectomy by a horizontal transfer of specific mRNA subsets.

Publication Title

Human liver stem cell-derived microvesicles accelerate hepatic regeneration in hepatectomized rats.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE33585
Expression data from monocytic cell lines (THP)
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The experiment aims to identify transcriptional effects of Infliximab (an anti-TNF antibody) and CDP870 on human cell lines

Publication Title

mTNF reverse signalling induced by TNFα antagonists involves a GDF-1 dependent pathway: implications for Crohn's disease.

Sample Metadata Fields

Cell line, Treatment, Time

View Samples
accession-icon GSE52992
Rsk2 controls synovial fibroblast hyperplasia and the course of arthritis.
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

To understand differences in the pathogenesis of synovial hyperplasia during TNF-induced arthritis, we compared the global gene expression of hTNFtg and hTNFtg;Rsk2-/y primary synovial fibroblasts.

Publication Title

Rsk2 controls synovial fibroblast hyperplasia and the course of arthritis.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE12243
Microvesicles derived from human mesenchymal stem cells protect against acute tubular injury
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina human-6 v2.0 expression beadchip

Description

Administration of exogenous mesenchymal stem cells (MSCs) has been shown to improve the recovery from acute kidney injury (AKI). It has been suggested that the beneficial effect of MSCs is related to the paracrine release of factors favouring proliferation of intrinsic epithelial cells survived to injury rather than to their trans-differentiation. However the factors involved remain to be determined. In the present study we demonstrated that microvesicles (MVs) derived from human bone marrow MSCs are able to stimulate in vitro proliferation and apoptosis resistance of tubular epithelial cells (TEC). In addition, MVs were found to accelerate in vivo the morphological and functional recovery of glycerol induced AKI in SCID mice by inducing TEC proliferation. The effect of MVs on the recovery of AKI was comparable to that of human MSC treatment. In vitro we found that the CD44 and beta1-integrin-dependent incorporation of MVs in TEC was required for their biological action. However, despite their internalization, RNase-treated MVs failed to induce in vitro apoptosis resistance and TEC proliferation, and in vivo recovery from AKI, suggesting an RNA-dependent biological effect. Microarray analysis and quantitative RT-PCR of MV-RNA extract indicated that MVs were shuttling a specific subset of cellular mRNA, such as mRNA associated with the mesenchymal differentiative phenotype and with several cell functions involved in the control of transcription, proliferation, apoptosis and cell immune regulation. These results suggest that MVs derived from MSCs may activate a proliferative program in TEC survived to injury in AKI by an horizontal transfer of mRNA.

Publication Title

Mesenchymal stem cell-derived microvesicles protect against acute tubular injury.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact