refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 252 results
Sort by

Filters

Technology

Platform

accession-icon GSE57194
In Vitro Transformation of Primary Human CD34+ Cells by AML Fusion Oncogenes: Early Gene Expression Profiling Reveals Possible Drug Target in AML
  • organism-icon Homo sapiens
  • sample-icon 29 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Different fusion oncogenes in acute myeloid leukemia (AML) have distinct clinical and laboratory features suggesting different modes of malignant transformation. Here we compare the in vitro effects of representatives of major groups of AML fusion oncogenes on primary human CD34+ cells.

Publication Title

In vitro transformation of primary human CD34+ cells by AML fusion oncogenes: early gene expression profiling reveals possible drug target in AML.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE23584
The Identification of Genetic Factors Influencing Susceptibility to Staphylococcus aureus Infection in mice susceptible and resistant to S. aureus infection
  • organism-icon Mus musculus
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

It has been shown that inbred strains of mice exhibit variable susceptibility to S. aureus infection, but the specific genes responsible for this differential phenotype are unknown. Using ISHM to identify genomic regions associated with the phenotypes, we considered genes within those interval to be candidate genes and used the gene expression patterns of the genes contained in the region to determine whether the genes are differentially expressed between the 2 phenotypically different groups of mice.

Publication Title

Haplotype Association Mapping Identifies a Candidate Gene Region in Mice Infected With Staphylococcus aureus.

Sample Metadata Fields

Time

View Samples
accession-icon SRP168241
Preparing for the first breath at single cell level [single cell Fluidigm C1]
  • organism-icon Mus musculus
  • sample-icon 125 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

The respiratory system undergoes remarkable structural, biochemical, and functional changes necessary for adaptation to air breathing at birth. To identify dynamic changes in gene expression in the diverse pulmonary cells at birth, we performed Drop-seq based massive parallel single-cell RNA sequencing. An iterative cell type identification strategy was used to unbiasedly identify the heterogeneity of murine pulmonary cell types on postnatal day 1. Distinct populations of epithelial, endothelial, mesenchymal, and immune cells were identified, each containing distinct subpopulations. Cell type predictions and signature genes identified using Drop-seq were cross-validated using an independent single cell isolation platform. Temporal changes in RNA expression patterns were compared before and after birth to identify signaling pathways selectively activated in specific pulmonary cell types, demonstrating activation of UPR signaling during perinatal adaptation of the lung. Present data provide the first single cell view of the adaptation to air breathing after birth. All data from the present study are freely accessed at https://research.cchmc.org/pbge/lunggens/SCLAB.html. Overall design: Left and right lobes of PND1 mouse lungs were rapidly dissected in ice-cold PBS. Cell concentration was examined with a hemocytometer and adjusted to around 300 cells per microliter for Fluidigm C1.

Publication Title

Single cell RNA analysis identifies cellular heterogeneity and adaptive responses of the lung at birth.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP168242
Preparing for the first breath at single cell level [whole lung time course]
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

The respiratory system undergoes remarkable structural, biochemical, and functional changes necessary for adaptation to air breathing at birth. To identify dynamic changes in gene expression in the diverse pulmonary cells at birth, we performed Drop-seq based massive parallel single-cell RNA sequencing. An iterative cell type identification strategy was used to unbiasedly identify the heterogeneity of murine pulmonary cell types on postnatal day 1. Distinct populations of epithelial, endothelial, mesenchymal, and immune cells were identified, each containing distinct subpopulations. Cell type predictions and signature genes identified using Drop-seq were cross-validated using an independent single cell isolation platform. Temporal changes in RNA expression patterns were compared before and after birth to identify signaling pathways selectively activated in specific pulmonary cell types, demonstrating activation of UPR signaling during perinatal adaptation of the lung. Present data provide the first single cell view of the adaptation to air breathing after birth. All data from the present study are freely accessed at https://research.cchmc.org/pbge/lunggens/SCLAB.html. Overall design: Embryos and mice for this study were collected from timed pregnant mice. Whole lungs were surgically dissected at embryonic (E) days 16.5, 18.5 and postnatal days (PND) 1, 3, 7, 14, and 28

Publication Title

Single cell RNA analysis identifies cellular heterogeneity and adaptive responses of the lung at birth.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE15912
Whole genome transcriptome profiling of Pusa 1266 and Pusa Basmati 1 in panicle primordia stage
  • organism-icon Oryza sativa
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Rice Genome Array (rice)

Description

The aim of this study was to identify candidate genes responsible for grain number per panicle between a pair of rice varieties (Pusa 1266 and Pusa Basmati 1) by combining QTL analysis with expression analysis. Microarray analysis of RNA extracted from the panicle primordia showed 2741 differentially expressed genes. The differentially expressed genes were shortened to 18 on the basis of their occurance in the QTL region (responsible for grain number regulation) detected in RIL population derived from Pusa 1266 and Pusa Basmati 1.

Publication Title

Identification of candidate genes for grain number in rice (Oryza sativa L.).

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE58404
Identification of a Mammalian Silicon Transporter
  • organism-icon Rattus norvegicus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Silicon (Si) has long been known to play a major physiological role in certain organisms, including some sponges and many diatoms and higher plants, leading to the recent identification of multiple proteins responsible for silicon transport in a range of algal and plant species. In mammals, despite several convincing studies suggesting that silicon is an important factor in bone development and connective tissue health, there is a critical lack of understanding in biochemical pathways that enable silicon homeostasis. Here we report the identification of a mammalian efflux silicon transporter, namely Slc34a2 (also known as NaPiIIb), which was upregulated in the kidneys of rats following chronic dietary silicon deprivation. When heterologously expressed in Xenopus laevis oocytes, the protein displayed marked silicon transport activity, specifically efflux, comparable to plant OsLsi2 transfected in the same fashion and independent of sodium and/or phosphate influx. This is the first evidence for a specific active transporter protein for silicon in mammals and suggests an important role for silicon in vertebrates.

Publication Title

Identification of a mammalian silicon transporter.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon SRP074888
Transcriptome-wide mRNA alterations in Streptozotocin induced Type I diabetic mouse heart
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We sequenced mRNA from Left Ventricles of Streptozotocin induced Type I diabetic mouse hearts or mock treated controls at 4 weeks post-treatment in order to assess alternative splicing changes. Overall design: Heart mRNA profiles of Control and Diabetic (STZ:T1D) mice were generated by deep sequencing using Illumina HiSeq 1000.

Publication Title

Dysregulation of RBFOX2 Is an Early Event in Cardiac Pathogenesis of Diabetes.

Sample Metadata Fields

Age, Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon GSE54500
Role of H3K79 methylation states in HOX gene expression and leukemogenesis
  • organism-icon Mus musculus
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

AF10 regulates progressive H3K79 methylation and HOX gene expression in diverse AML subtypes.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon SRP089884
Single cell RNA sequencing analysis of bacterial lipoprotein-induced polyploid macrophages.
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Granulomas are immune cell aggregates formed in response to persistent inflammatory stimuli. Granuloma macrophage subsets are diverse and carry varying copy numbers of their genomic information. The molecular programs that control the differentiation of such macrophage populations in response to a chronic stimulus, though critical for disease outcome, have not been defined. In this study, we performed scRNA-Seq experiments to gain insights into the transcriptional regulation of polyploid macrophage differentiation in response to chronically persistent inflammatory stimuli. Overall design: scRNA-Seq was performed on FACS-sorted 2c and >4c DNA content polyploid macrophages after six days of bacterial lipoprotein, FSL-1 treatment of bone marrow-derived macrophage precursors. 2c DNA content macrophages treated with M-CSF alone were used as controls. CEL-Seq2 protocol was used for single cell sequencing (Hashimshony et al. 2016).

Publication Title

DNA Damage Signaling Instructs Polyploid Macrophage Fate in Granulomas.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP026084
Global regulation of alternative splicing by adenosine deaminase acting on RNA (ADAR) [RNA-seq]
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

Alternative mRNA splicing is a major mechanism for gene regulation and transcriptome diversity. Despite the extent of the phenomenon, the regulation and specificity of the splicing machinery are only partially understood. Adenosine-to-inosine (A-to-I) RNA editing of pre-mRNA by ADAR enzymes has been linked to splicing regulation in several cases. Here we used bioinformatics approaches, RNA-seq and exon-specific microarray of ADAR knockdown cells to globally examine how ADAR and its A-to-I RNA editing activity influence alternative mRNA splicing. Although A-to-I RNA editing only rarely targets canonical splicing acceptor, donor, and branch sites, it was found to affect splicing regulatory elements (SREs) within exons. Cassette exons were found to be significantly enriched with A-to-I RNA editing sites compared with constitutive exons. RNA-seq and exon-specific microarray revealed that ADAR knockdown in hepatocarcinoma and myelogenous leukemia cell lines leads to global changes in gene expression, with hundreds of genes changing their splicing patterns in both cell lines. This global change in splicing pattern cannot be explained by putative editing sites alone. Genes showing significant changes in their splicing pattern are frequently involved in RNA processing and splicing activity. Analysis of recently published RNA-seq data from glioblastoma cell lines showed similar results. Our global analysis reveals that ADAR plays a major role in splicing regulation. Although direct editing of the splicing motifs does occur, we suggest it is not likely to be the primary mechanism for ADAR-mediated regulation of alternative splicing. Rather, this regulation is achieved by modulating trans-acting factors involved in the splicing machinery. Overall design: HepG2 and K562 cell lines were stably transfected with plasmids containing siRNA designed to specifically knock down ADAR expression (ADAR KD). This in order to examine how ADAR affects alternative splicing globally.

Publication Title

Global regulation of alternative splicing by adenosine deaminase acting on RNA (ADAR).

Sample Metadata Fields

Cell line, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact