refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 151 results
Sort by

Filters

Technology

Platform

accession-icon GSE24598
The human nose harbours a niche of olfactory ecto-mesenchymal stem cells displaying neurogenic and osteogenic properties
  • organism-icon Homo sapiens
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a), Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We previously identified multipotent stem cells within the lamina propria of the human olfactory mucosa, located in the nasal cavity. We also demonstrated that this cell type differentiates into neural cells and improves locomotor behavior after transplantation in a rat model of Parkinsons disease. Yet, next to nothing is known about their specific stemness characteristics. We therefore devised a study aiming to compare olfactory lamina propria stem cells from 4 individuals to bone marrow mesenchymal stem cells from 4 age- and gendermatched individuals. Using pangenomic microarrays and immunostaining with 34 cell surface marker antibodies, we show here that olfactory stem cells are closely related to bone marrow stem cells. However, olfactory stem cells exhibit also singular traits. By means of techniques such as proliferation assay, cDNA microarrays, RT-PCR, in vitro and in vivo differentiation, we report that, when compared to bone marrow stem cells, olfactory stem cells display i) a high proliferation rate; ii) a propensity to differentiate into osseous cells and iii) a disinclination to give rise to chondrocytes and adipocytes. Since peripheral olfactory stem cells originate from a neural crest-derived tissue and, as shown here, exhibit an increased expression of neural cellrelated genes, we propose to name them olfactory ecto-mesenchymal stem cells (OE-MSC). Further studies are now required to corroborate the therapeutic potential of OE-MSCs in animal models of bone and brain diseases.

Publication Title

The human nose harbors a niche of olfactory ectomesenchymal stem cells displaying neurogenic and osteogenic properties.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment

View Samples
accession-icon GSE43891
Expression profiling in bone-marrow-derived neutrophils of lcn2 deficient mouse
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Impaired neutrophil function in 24p3 null mice contributes to enhanced susceptibility to bacterial infections.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE43889
Gene expression profiling in bone-marrow-derived neutrophils of lcn2 deficient mouse
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Lipocalin 24p3 (24p3) is a neutrophil secondary granule protein. 24p3 is also a siderocalin, which binds several bacterial siderophores. It was therefore proposed that synthesis and secretion of 24p3 by stimulated macrophages or release of 24p3 upon neutrophil degranulation sequesters iron-laden siderophores to attenuate bacterial growth. Accordingly, 24p3-deficient mice are susceptible to bacterial pathogens whose siderophores would normally be chelated by 24p3. Specific granule deficiency (SGD) is a rare congenital disorder characterized by complete absence of proteins in secondary granules. Neutrophils from SGD patients, who are prone to bacterial infections, lack normal functions but the potential role of 24p3 in neutrophil dysfunction in SGD is not known. Here we show that neutrophils from 24p3-deficient mice are defective in many neutrophil functions. Specifically, neutrophils in 24p3-deficient mice do not extravasate to sites of infection and are defective for chemotaxis. A transcriptome analysis revealed that genes that control cytoskeletal reorganization are selectively suppressed in 24p3-deficient neutrophils. Additionally, small regulatory RNAs (miRNAs) that control upstream regulators of cytoskeletal proteins are also increased in 24p3-deficient neutrophils. Further, 24p3-deficient neutrophils failed to phagocytose bacteria, which may account for the enhanced sensitivity of 24p3-deficient mice to both intracellular (Listeria monocytogenes) and extracellular (Candida albicans, Staphylococcus aureus) pathogens. Interestingly, Listeria does not secrete siderophores and additionally, the siderophore secreted by Candida is not sequestered by 24p3. Therefore, the heightened sensitivity of 24p3-deficient mice to these pathogens is not due to sequestration of siderophores limiting iron availability, but is a consequence of impaired neutrophil function.

Publication Title

Impaired neutrophil function in 24p3 null mice contributes to enhanced susceptibility to bacterial infections.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE5264
Human bronchial epithelial cell differentiation time course
  • organism-icon Homo sapiens
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Microarray analysis was performed to identify transcriptional changes that occur during mucociliary differentiation of human primary bronchial epithelial cells cultured at an air-liquid interface (ALI).

Publication Title

Transcriptional profiling of mucociliary differentiation in human airway epithelial cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE7253
Puberty and Diabetes in the Kidney
  • organism-icon Rattus norvegicus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Puberty unmasks or accelerates nephropathies, including the nephropathy of diabetes mellitus (DM). A number of cellular systems implicated in the kidney disease of DM interweave, forming an interdependent functional web. We performed focused microarray analysis to test the hypothesis that one or more genes in the transforming growth factor beta (TGF-) signaling system would be differentially regulated in male rats depending on the age of onset of DM.

Publication Title

Prepubertal onset of diabetes prevents expression of renal cortical connective tissue growth factor.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE107798
Comparative analysis of gene expression identifies distinct molecular signatures of bone marrow- and periosteal skeletal stem/progenitor cells
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Genetic comparison between periosteal skeletal stem cells and bone marrow skeletal stem cells in mice

Publication Title

Comparative analysis of gene expression identifies distinct molecular signatures of bone marrow- and periosteal-skeletal stem/progenitor cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE52508
Knockdown of EI24 in ZR-75-1 cells
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Analysis of ZR-75-1 cells folowing knockdown of EI24 (P53-Induced Gene 8) and control vector. As a p53 response gene, EI24 is known to controlling cell growth, apoptosis, and autophagy.

Publication Title

EI24 regulates epithelial-to-mesenchymal transition and tumor progression by suppressing TRAF2-mediated NF-κB activity.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE53152
Gene expression analysis in wild-type and OsGSTU4 overexpression line
  • organism-icon Arabidopsis thaliana
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Glutathione S-transferases (GSTs) are the ubiquitous enzymes, which play important role in defense against various stresses. To analyze the function of a rice GST gene, OsGSTU4, we overexpressed it into Arabidopsis constitutively. The physiological analyses revealed that overexpression of GRX gene enhanced abiotic stress tolerance in transgenic plants as compared to wild-type.

Publication Title

Over-expression of a rice tau class glutathione s-transferase gene improves tolerance to salinity and oxidative stresses in Arabidopsis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE58460
Rheumatoid Arthritis Rat Model Treated with Acupuncture
  • organism-icon Rattus norvegicus
  • sample-icon 38 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Systemic Wound Healing Associated with local sub-Cutaneous Mechanical Stimulation.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE48025
Affymetrix Chip Data of the Transcriptome of the Rheumatoid Arthritis Rat Model Treated with Acupuncture (Affymetrix, mRNA, batch1)
  • organism-icon Rattus norvegicus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

We report the application of Affymetrix technology for high-throughput profiling of the transcriptome of the rheumatoid arthritis (RA) rat model induced by collagen type II (CIA), with acupuncture, Methotrexate, Isofluorane anesthetic and placebo treatments, as well as the healthy control.

Publication Title

Systemic Wound Healing Associated with local sub-Cutaneous Mechanical Stimulation.

Sample Metadata Fields

Sex, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact