refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 31 results
Sort by

Filters

Technology

Platform

accession-icon GSE93579
Gene expression and alternative splicing profiles of BEZ235 treated Ewing Sarcoma cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

TC71 cells treated either with BEZ235 or DMSO

Publication Title

hnRNPM guides an alternative splicing program in response to inhibition of the PI3K/AKT/mTOR pathway in Ewing sarcoma cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13901
Treatment of human monocyte-derived dendritic cells with Saccaromyces cerevisiae in exponential growth phase
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

In vitro experiment of stimulation of monocyte-derived dendritic cells with Saccaromyces cerevisiae in exponential growth phase. This experiment was performed to verify the comparability of microarray

Publication Title

Using pathway signatures as means of identifying similarities among microarray experiments.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE36938
Engineering ABT-737 Resistance in MYC-driven Lymphomas Identifies DHX9 as a Drug Response Modifier
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Many traditional cytotoxic agents used in the treatment of cancer function by eliciting an apoptotic response in tumor cells. However, evasion of apoptosis by BCL-2 family members is often deregulated prior to therapeutic intervention leading to treatment failure. To address this, ABT-737 was rationally designed to target BCL-2-like family members and has shown promising results against tumor cells dependent on BCL-2 for their survival. One shortcoming is that MCL-1, a member of the BCL-2 family is poorly inhibited by ABT-737 and is a major cause of resistance. To gain insight into biological pathways that could circumvent this resistance, we designed an shRNA screen to identify novel sensitizers to ABT-737 by engineering MYC driven lymphomas that were resistant to ABT-737 due to endogenous MCL-1 expression. Utilizing this model, we performed a shRNA drop-out screen and identified Dhx9 as a target whose suppression sensitizes cells to ABT-737. DHX9 loss lead to replicative stress signaling, which in turn potently induced the BH3-only proteins, NOXA and PUMA, in a p53-dependent manner to curtail MCL-1 activity. Induction of NOXA is essential for ABT-737 sensitization. Our results ascribe a novel role for DHX9 in the replicative stress pathway and link DHX9 activity to p53 function in vivo.

Publication Title

RNAi screening uncovers Dhx9 as a modifier of ABT-737 resistance in an Eμ-myc/Bcl-2 mouse model.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE7875
Deletion of PKBalpha/Akt1 affects thymic development
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The thymus constitutes the primary lymphoid organ for the majority of T cells. The phosphatidyl-inositol 3 kinase (PI3K) signaling pathway is involved in lymphoid development. Defects in single components of this pathway prevent thymocytes from progressing beyond early T cell developmental stages. Protein kinase B (PKB) is the main effector of the PI3K pathway. To determine whether PKB mediates PI3K signaling in early T cell development, we characterized PKB knockout thymi. Our results reveal a significant thymic hypocellularity in PKBalpha-/- neonates and an accumulation of early thymocyte subsets in PKBalpha-/- adult mice. The latter finding is specifically attributed to the lack of PKBalpha within the lymphoid component of the thymus. Microarray analyses show that the absence of PKBalpha in early thymocyte subsets modifies the expression of genes known to be involved in pre-TCR signaling, in T cell activation, and in the transduction of interferon-mediated signals. This report highlights the specific requirements of PKBalpha for thymic development.

Publication Title

Deletion of PKBalpha/Akt1 affects thymic development.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE56673
The transcriptional response to PPP3R1
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Lysosomal calcium signalling regulates autophagy through calcineurin and ​TFEB.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE56672
Expression data from PPP3R1 cell line starved as compared to PPP3R1 cell line grown in Normal Medium
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

In order to identify the effects of starvation on the PPP3R1 cell line trascriptome, we performed Affymetrix Gene-Chip hybridization experiments for the starved cells

Publication Title

Lysosomal calcium signalling regulates autophagy through calcineurin and ​TFEB.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE56671
Expression data from MEFs wt cells starved as compared to MEFs wt cells grown in Normal Medium
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

In order to identify the effects of starvation on the MEFs wt trascriptome, we performed Affymetrix Gene-Chip hybridization experiments for the starved cells

Publication Title

Lysosomal calcium signalling regulates autophagy through calcineurin and ​TFEB.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE55724
Gene expression profiles regulated by PLD1-E2F1 axis in two Wnt-relevant colon cancer cells
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

1. To identify potential effectors responsible for anti-tumorigenesis by targeting PLD1, we performed microarray in two Wnt-relevant colon cancer cells and analyzed transcriptional profile of genes that were differently expressed by inhibition and knockdown of PLD1

Publication Title

Targeting phospholipase D1 attenuates intestinal tumorigenesis by controlling β-catenin signaling in cancer-initiating cells.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP076879
JQ1 +/- Vemurafenib in BRAF mutant melanoma (A375)
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The combination of JQ1 and Vemurafenib acted synergistically in BRAF-mutant cell lines, resulting in marked apoptosis in vitro, with up-regulation of pro-apoptotic proteins. In vivo, combination treatment suppressed tumor growth and significantly improved survival compared to either drug alone. RNA sequencing of tumor tissues revealed almost four thousand genes that were uniquely modulated by the combination, with several anti-apoptotic genes significantly down-regulated. Overall design: 16 samples analyzed from 8 mice (each mouse was bearing two tumors, one on each flank) in 4 treatment groups (control, vemurafenib alone, JQ1 alone, JQ1+vemurafenib)

Publication Title

BET and BRAF inhibitors act synergistically against BRAF-mutant melanoma.

Sample Metadata Fields

Cell line, Treatment, Subject

View Samples
accession-icon GSE16091
Gene expression profiles of human osteosarcoma, set2
  • organism-icon Homo sapiens
  • sample-icon 33 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Pulmonary metastasis continues to be the most common cause of death in osteosarcoma. Indeed, the 5-year survival for newly diagnosed osteosarcoma patients has not significantly changed in over 20 years. Further understanding of the mechanisms of metastasis and resistance for this aggressive pediatric cancer is necessary. Pet dogs naturally develop osteosarcoma providing a novel opportunity to model metastasis development and progression. Given the accelerated biology of canine osteosarcoma, we hypothesized that a direct comparison of canine and pediatric osteosarcoma expression profiles may help identify novel metastasis-associated tumor targets that have been missed through the study of the human cancer alone. Collectively, these data support the strong similarities between human and canine osteosarcoma and underline the opportunities provided by a comparative oncology approach as a means to improve our understanding of cancer biology and therapy.

Publication Title

Canine tumor cross-species genomics uncovers targets linked to osteosarcoma progression.

Sample Metadata Fields

No sample metadata fields

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact