refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 253 results
Sort by

Filters

Technology

Platform

accession-icon GSE34305
brain expression data from adult mice prenatally exposed to ethanol
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Moderate alcohol consumption during pregnancy can result in a heterogeneous range of neurobehavioural and cognitive effects, termed fetal alcohol spectrum disorders (FASD). We have developed a mouse moder of FASD that involves moderate ethanol exposure throughout gestation achieved by voluntary maternal consumption. This model results in phenotypes relevant to FASD. Since ethanol is known to directly affect the expression of genes in the developing brain leading to abnormal cell death, changes to cell proliferation, migration, and differentiation, and potential changes to epigenetic patterning, we hypothesize that this leaves a long-term footprint on the adult brain. However, the long-term effects of prenatal ethanol exposure on brain gene expression, when behavioural phenotypes are apparent, are unclear.

Publication Title

Long-term alterations to the brain transcriptome in a maternal voluntary consumption model of fetal alcohol spectrum disorders.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE34469
Brain expression data from adult mice prenatally exposed to ethanol
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Moderate alcohol exposure during pregnancy can result in a heterogeneous range of neurobehavioural and cognitive effects, termed fetal alcohol spectrum disorders (FASD). We have developed a mouse model of FASD that involves moderate ethanol exposure throughout gestation achieved by voluntary maternal consumption. This model results in phenotypes relevant to FASD. Since ethanol is known to directly affect the expression of genes in the developing brain leading to abnormal cell death, changes to cell proliferation, migration, and differentiation, and potential changes to epigenetic patterning, we hypothesize that this leaves a long-term footprint on the adult brain. However, the long-term effects of prenatal ethanol exposure on brain gene expression, when behavioural phenotypes are apparent, are unclear.

Publication Title

Long-lasting alterations to DNA methylation and ncRNAs could underlie the effects of fetal alcohol exposure in mice.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE34549
brain expression data from adult mice exposed to ethanol at postnatal day 4 and 7
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The developing brain is particularly sensitive to ethanol during the brain growth spurt or synaptogenesis (third human trimester equivalent). This has been shown to lead to abnormal brain development and behavioural changes in the adult mouse that are relevant to those seen in humans with fetal alcohol spectrum disorders (FASD). We evaluated the long-term (postnatal day 60 young adult) gene expression changes that occur in the brain due to ethanol exposure during synaptogenesis.

Publication Title

Long-lasting alterations to DNA methylation and ncRNAs could underlie the effects of fetal alcohol exposure in mice.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE9253
Genomic analyses of TF binding, histone acetylation and gene expression reveal classes of E2-regulated promoters
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To explore the global mechanisms of estrogen-regulated transcription, we used chromatin immunoprecipitation coupled with DNA microarrays to determine the localization of RNA polymerase II (Pol II), estrogen receptor alpha (ERalpha), steroid receptor coactivator proteins (SRC), and acetylated histones H3/H4 (AcH) at estrogen-regulated promoters in MCF-7 cells with or without estradiol (E2) treatment. In addition, we correlated factor occupancy with gene expression and the presence of transcription factor binding elements. Using this integrative approach, we defined a set of 58 direct E2 target genes based on E2-regulated Pol II occupancy and classified their promoters based on factor binding, histone modification, and transcriptional output. Many of these direct E2 target genes exhibit interesting modes of regulation and biological activities, some of which may be relevant to the onset and proliferation of breast cancers. Our studies indicate that about one-third of these direct E2 target genes contain promoter-proximal ERalpha-binding sites, which is considerably more than previous estimates. Some of these genes represent possible novel targets for regulation through the ERalpha/AP-1 tethering pathway. Our studies have also revealed several previously uncharacterized global features of E2-regulated gene expression, including strong positive correlations between Pol II occupancy and AcH levels, as well as between the E2-dependent recruitment of ERalpha and SRC at the promoters of E2-stimulated genes. Furthermore, our studies have revealed new mechanistic insights into E2-regulated gene expression, including the absence of SRC binding at E2-repressed genes and the presence of constitutively bound, promoter-proximally paused Pol IIs at some E2-regulated promoters. These mechanistic insights are likely to be relevant for understanding gene regulation by a wide variety of nuclear receptors.

Publication Title

Genomic analyses of transcription factor binding, histone acetylation, and gene expression reveal mechanistically distinct classes of estrogen-regulated promoters.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE83761
Gene expression in neonatal NKT cells and lymphoma samples from mice with high E protein levels
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Id2 Collaborates with Id3 To Suppress Invariant NKT and Innate-like Tumors.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE73864
Gene expression in neonatal NKT cells and lymphoma samples from mice with high E protein levels [Microarray Expression]
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Inhibitor of DNA binding proteins (ID), including Id1-4, are transcriptional regulators involved in promoting cell proliferation and survival in various cell types. Although upregulation of Id proteins have been widely reported to be associated with a broad spectrum of tumors, recent studies have identified that Id3 also plays a tumor suppressor role in the development of Burkitts lymphoma in humans and Hepatosplenic T cell lymphomas in mice. However, there is a lack of evidence to suggest the tumor suppressor roles for other Id genes, particularly Id2, which is highly expressed in many T lymphocytes. In this study we report that Id2 plays a tumor suppressive role in collaboration with Id3 in developing T cells in mice. We found that there was rapid lymphoma development in Id2f/fId3f/fLckCre mice caused by unchecked neonatal expansion of invariant Natural Killer T (iNKT) cells and a unique subset of innate-like, CD1d-independent T cells. These tumors also gave rise to lymphomas in Rag-deficient mice, reaffirming the inherent tumorigenic potential of these cells. Microarray analysis revealed a significantly modified program in expanding iNKT cells that ultimately contributed to tumorigenesis. We found chromosome instability and significant upregulation of several different signaling pathways, including pathways for multiple chemokines, cytokines and their receptors, in these tumors. While Id proteins are being considered as potential therapeutic targets in some cancer models, our results highlight the possibility of aggravated tumorigenesis upon suppression of Id2 and Id3.

Publication Title

Id2 Collaborates with Id3 To Suppress Invariant NKT and Innate-like Tumors.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP077280
Gene expression in neonatal NKT cells and lymphoma samples from mice with high E protein levels [RNA-Seq]
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

Inhibitor of DNA binding proteins (ID), including Id1-4, are transcriptional regulators involved in promoting cell proliferation and survival in various cell types. Although upregulation of Id proteins have been widely reported to be associated with a broad spectrum of tumors, recent studies have identified that Id3 also plays a tumor suppressor role in the development of Burkitt’s lymphoma in humans and Hepatosplenic T cell lymphomas in mice. However, there is a lack of evidence to suggest the tumor suppressor roles for other Id genes, particularly Id2, which is highly expressed in many T lymphocytes. In this study we report that Id2 plays a tumor suppressive role in collaboration with Id3 in developing T cells in mice. We found that there was rapid lymphoma development in Id2f/fId3f/fLckCre mice caused by unchecked neonatal expansion of invariant Natural Killer T (iNKT) cells and a unique subset of innate-like, CD1d-independent T cells. These tumors also gave rise to lymphomas in Rag-deficient mice, reaffirming the inherent tumorigenic potential of these cells. Microarray analysis revealed a significantly modified program in expanding iNKT cells that ultimately contributed to tumorigenesis. Similar pathways in CD1dTet- tumors were verified by RNASeq. We found chromosome instability and significant upregulation of several different signaling pathways, including pathways for multiple chemokines, cytokines and their receptors, in these tumors. While Id proteins are being considered as potential therapeutic targets in some cancer models, our results highlight the possibility of aggravated tumorigenesis upon suppression of Id2 and Id3. Overall design: Pre-malignant iNKT (TCRß+CD1dTet+) cells were sorted from three 20 day old L-DKO mice. Lymphoma cells (T cells that are CD1dTet+ or CD1dTet-) were sorted from tissues of 18-37 week old L-DKO mice. Total RNA was extracted, and paired-end libraries were prepared and sequenced using Illumina Hi-Seq 4000

Publication Title

Id2 Collaborates with Id3 To Suppress Invariant NKT and Innate-like Tumors.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE9593
Cellular Aging of Mesenchymal Stem Cells
  • organism-icon Homo sapiens
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To determine gene expression changes during in vitro senescence of MSC we have analyzed differential expression of the corresponding early passage (P2) and senescent passage (PX). There were global changes in the gene expression profile that were reproducible in three independent donor samples.

Publication Title

Replicative senescence of mesenchymal stem cells: a continuous and organized process.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE20211
LMP-420: a novel purine nucleoside analogue with potent cytotoxic effects for chronic lymphocytic leukemia cells
  • organism-icon Homo sapiens
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

[original title] LMP-420: a novel purine nucleoside analogue with potent cytotoxic effects for chronic lymphocytic leukemia cells and minimal toxicity for normal hematopoietic cells.

Publication Title

LMP-420: a novel purine nucleoside analog with potent cytotoxic effects for CLL cells and minimal toxicity for normal hematopoietic cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE12274
Mesenchymal Stromal Cells of Different Donor Age
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In this series we have analyzed the effect of donor age on the gene expression profile of mesenchymal stromal cells (alternatively named mesenchymal stem cells; MSC) from human bone marrow. Cells were taken from bone marrow aspirates from iliac crest (BM) of healthy donors or from the caput femoris (HIP) of elderly patients that received femoral head prosthesis.

Publication Title

Aging and replicative senescence have related effects on human stem and progenitor cells.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact