refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 69 results
Sort by

Filters

Technology

Platform

accession-icon GSE80447
Expression data from proliferating and senescent IMR90 cells
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Total RNA was isolated from proliferating and senescent IMR90 cells to compare gene-expression to the changes in nucleolus-association in proliferating and senescent IMR90 cells.

Publication Title

Nucleolus association of chromosomal domains is largely maintained in cellular senescence despite massive nuclear reorganisation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE53284
Transcriptome of HEK293 cells stably knockdown for the BAHD1 gene with a shRNA
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Comparison of gene expression profile of HEK293 cells stably expressing a shRNA control (SilX-CT) or a shRNA against BAHD1 (SilX-BAHD1)

Publication Title

Overexpression of the Heterochromatinization Factor BAHD1 in HEK293 Cells Differentially Reshapes the DNA Methylome on Autosomes and X Chromosome.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE51863
Transcriptome of HEK293 cells (HEK293-CT) and HEK293 cells stably over-expressing the BAHD1 gene (HEK-BAHD1)
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Comparison of gene expression profile of HEK293-CT cells and HEK293 cells stably over-expressing the BAHD1 gene (HEK-BAHD1)

Publication Title

Overexpression of the Heterochromatinization Factor BAHD1 in HEK293 Cells Differentially Reshapes the DNA Methylome on Autosomes and X Chromosome.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE25513
AMPK and calcineurin induced longevity is mediated by CRTC-1 and CREB
  • organism-icon Caenorhabditis elegans
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

AMPK (AAK-2) and calcineurin (TAX-6) mediate longevity exclusively through post-translational modification of CRTC-1, the sole C. elegans CRTC (CREB regulated transcriptional coactivator).

Publication Title

Lifespan extension induced by AMPK and calcineurin is mediated by CRTC-1 and CREB.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP070753
Mitochondrial stress induces chromatin reorganization to promote longevity and UPRmt
  • organism-icon Caenorhabditis elegans
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Organisms respond to mitochondrial stress through the upregulation of an array of protective genes, often perpetuating an early response to metabolic dysfunction across a lifetime. We find that mitochondrial stress causes widespread changes in chromatin structure through histone H3K9 di-methylation marks traditionally associated with gene silencing. Mitochondrial stress response activation requires the di-methylation of histone H3K9 through the activity of the histone methyltransferase met-2 and the nuclear co-factor lin-65. While globally the chromatin becomes silenced by these marks, remaining portions of the chromatin open up, at which point the binding of canonical stress responsive factors such as DVE-1 occurs. Thus, a metabolic stress response is established and propagated into adulthood of animals through specific epigenetic modifications that allow for selective gene expression and lifespan extension. Overall design: comparison of gene expression changes in response to cco-1 RNAi treatment in N2, lin-65(n3441) and met-2(ok2307) populations of C. elegans L4 animals

Publication Title

Mitochondrial Stress Induces Chromatin Reorganization to Promote Longevity and UPR(mt).

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE83722
Lipid biosynthesis coordinates a Mitochondrial to Cytosolic Stress Response
  • organism-icon Caenorhabditis elegans
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Description

Defects in mitochondrial metabolism have been increasingly linked with age-onset protein misfolding diseases such as Alzheimers, Parkinsons, and Huntingtons. In response to protein folding stress, compartment-specific unfolded protein responses (UPRs) within the endoplasmic reticulum, mitochondria, and cytosol work in parallel to ensure cellular protein homeostasis. While perturbation of individual compartments can make other compartments more susceptible to protein stress, the cellular conditions that trigger cross-communication between the individual UPRs remain poorly understood.

Publication Title

Lipid Biosynthesis Coordinates a Mitochondrial-to-Cytosolic Stress Response.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE2634
Comparison of human and non-human primate gene expression profiles
  • organism-icon Macaca mulatta, Chlorocebus aethiops, Homo sapiens, Macaca fascicularis
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Gene expression profiling is an important tool in the development of medical countermeasures against chemical warfare agents (CWAs). Non-human primates (NHPs), specifically the rhesus macaque (Macaca mulatta), the cynomologus macaque (Macaca fascicularis) and the African green monkey (Chlorocebus aethiops), are vital models in the development of CWA prophylactics, therapeutics, and diagnostics. However, gene expression profiling of these NHPs is complicated by the fact their genomes are not completely sequenced, and that no commercially available oligonucleotide microarrays (genechips) exist. We, therefore, sought to determine whether gene expression profiling of NHPs could be performed using human genechips. Whole blood RNA was isolated from each species and used to generate genechip probes. Hybridization of the NHP samples to human genechips (Affymetrix Human U133 Plus 2.0) resulted in comparable numbers of transcripts detected compared with human samples. Statistical analysis revealed intraspecies reproducibility of genechip quality control metrics; interspecies comparison between NHPs and humans showed little significant difference in the quality and reproducibility of data generated using human genechips. Expression profiles of each species were compared using principal component analysis (PCA) and hierarchical clustering to determine the similarity of the expression profiles within and across the species. The cynomologus group showed the least intraspecies variability, while the human group showed the greatest intraspecies variability. Intraspecies comparison of the expression profiles identified probesets that were reproducibly detected within each species. Each NHP species was found to be dissimilar to humans; the cynomologus group was the most dissimilar. Interspecies comparison of the expression profiles revealed probesets that were reproducibly detected in all species examined. These results show that human genechips can be used for expression profiling of NHP samples and provide a foundation for the development of tools for comparing human and NHP gene expression profiles.

Publication Title

Comparison of non-human primate and human whole blood tissue gene expression profiles.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP104758
RNA-sequencing of adult C57/Bl6 lymph nodes
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Given the increased T cell mediated DTH response to Candida albicans in female compared to male mice, we asked whether female and male lymphnodes differed in their expression of genes relevant to cell recruitment. Overall design: Pooled Lymph Nodes of C57Bl/6 Wild-type Female N=6, Wild-type Male N=6, or C57Bl/6 Four Core Genotype XY Male N=3 mice were analyzed by RNAseq for differences in gene expression.

Publication Title

Sex Differences in Mouse Popliteal Lymph Nodes.

Sample Metadata Fields

Age, Cell line, Subject

View Samples
accession-icon SRP059743
RNA sequencing analysis of DAF-16 target gene expression when math-33 function is genetically inactivated
  • organism-icon Caenorhabditis elegans
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

In this study we have investigated the effect of loss of math-33 activity on DAF-16-mediated target gene regulation in C. elegans under conditions of reduced Insulin/IGF-1 signaling (IIS). Using whole nematode RNA sequencing experiments we found that the daf-2(e1370)-mediated induction and repression of DAF-16 target genes was decreased in daf-2(e1370); math-33(tm3561) mutant animals. Our data suggest that the downregulation of endogenous DAF-16 isoforms in the absence of a functional MATH-33 severely affects the global expression of DAF-16 targets when IIS activity is reduced. Therefore, MATH-33 is essential for DAF-16-mediated target gene activation and repression in the context of IIS. Overall design: DAF-16 mediated target gene regulation was analyzed in daf-2(e1370) nematodes and compared to daf-2(e1370); math-33(tm3561) mutant animals. daf-16(mu86); daf-2(e1370); N2 (wild type) and math-33(tm3561) single mutant animals were used as controls.

Publication Title

The Deubiquitylase MATH-33 Controls DAF-16 Stability and Function in Metabolism and Longevity.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP081104
Olfactory sensory neuron-specific IGF1R knockout in mice results in increased smell perception, insulin resistance and adiposity
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Olfaction is fundamental for survival but there is little known about the connection between smell perception and metabolism. In this study we implemented IGF1R knockout mice in the olfactory sensory neurons, by olfactory marker protetin (OMP) Cre specific recombination, and investigated metabolic parameters, smell perception and transcriptome sequencing. We could demonstrate that IGF1R knockout in the olfactory sensory neurons results in enhanced smell perception, insulin resistance under normal chow diet conditions and increased adiposity in mice fed control diet. Transcriptome analysis of the olfactory epithelium revealed differential expression of markers for mature and immature olfactory sensory neurons, being down-regulated and up- regulated respectively, pointing to differentiation-dependent changes that result in increased olfactory perception. Collectively, this study provides evidence that enhanced smell perception can result in insulin resistance and increased adiposity. Overall design: mRNA profiles of olfactory sensory neurons (OSN) extracted from homozygous tissue-specific IGF1R knockout (OMPIGF1R) and respective cotnrol mice (OMPflfl) were generated by deep sequencing, in four replicates using Illumina sequencing

Publication Title

The Sense of Smell Impacts Metabolic Health and Obesity.

Sample Metadata Fields

Age, Cell line, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact