refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 61 results
Sort by

Filters

Technology

Platform

accession-icon SRP080883
inDrop single cell RNA-seq of hematopoietic cells derived from human pluripotent stem cells
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

We performed morphogen-directed differentiation of human PSCs into HE followed by combinatorial screening of 26 candidate HSC-specifying TFs for the potential to promote hematopoietic engraftment in irradiated immune deficient murine hosts. We recovered seven TFs (ERG, HOXA5, HOXA9, HOXA10, LCOR, RUNX1, SPI1) that together were sufficient to convert HE into hematopoietic stem and progenitor cells (HSPCs) that engraft primary and secondary murine recipients Overall design: Examination of expression pattern in hematopoietic cells.

Publication Title

Haematopoietic stem and progenitor cells from human pluripotent stem cells.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE13093
Feeding schedule and the circadian clock shape rhythms in hepatic gene expression
  • organism-icon Mus musculus
  • sample-icon 64 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13060
The effects of temporally restricted feeding on hepatic gene expression
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Temporally restricted feeding is known to impact the circadian clock. This dataset shows the effects of temporally restricted feeding on the hepatic transcriptome.

Publication Title

Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13062
The effects of temporally restricted feeding on hepatic gene expression of Cry1, Cry2 double KO mice
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Restricted feeding impacts the hepatic circadian clock of WT mice. Cry1, Cry2 double KO mice lack a circadian clock and are thus expected to show rhythmical gene expression in the liver. Imposing a temporally restricted feeding schedule on these mice shows how the hepatic circadian clock and rhythmic food intake regulate rhythmic transcription in parallel

Publication Title

Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13063
Effects of extensive fasting and subsequent feeding on hepatic transcription
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Temporally restricted feeding has a profound effect on the circadian clock. Fasting and feeding paradigms are known to influence hepatic transcription. This dataset shows the dynamic effects of refeeding mice after a 24hour fasting period.

Publication Title

Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE11923
High-temporal resolution profiling of mouse liver
  • organism-icon Mus musculus
  • sample-icon 48 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

High-temporal resolution profiling was performed on mouse liver to detect rhythmic transcripts

Publication Title

Harmonics of circadian gene transcription in mammals.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE11922
High temporal resolution profiling of NIH3T3 cells
  • organism-icon Mus musculus
  • sample-icon 47 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

High-temporal resolution profiling was performed on NIH3T3 fibroblasts to detect rhythmic transcripts

Publication Title

Harmonics of circadian gene transcription in mammals.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE12444
FOXF2-regulated genes in human primary prostate stromal cells
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To identify the genes and pathways regulated by FOXF2, we investigated potential FOXF2 gene targets by microarray analyses of primary prostate stromal cells (PrSC) in which FOXF2 was knocked down by siRNA. 190 differentially expressed genes were selected, of which 104 genes were more highly expressed in PrSC cells treated with FOXF2 siRNA and 86 were more highly expressed in PRSC cells treated with negative control siRNA.

Publication Title

The FOXF2 pathway in the human prostate stroma.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE59745
Identification of novel long non-coding RNAs in prostate cancers
  • organism-icon Homo sapiens
  • sample-icon 42 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Long non-coding RNAs show highly tissue and disease specific expression profiles. We analyzed prostate cancer and normal adjacent prostate samples to identify cancer-specific transcripts and found 334 candidates, of which 15 were validated by RT-PCR.

Publication Title

Novel long non-coding RNAs are specific diagnostic and prognostic markers for prostate cancer.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE8087
RhoGDIbeta-responsive genes in MDA-MB-231 cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

RhoGDIbeta (ARHGDIB) is often expressed in tumor cells. It negatively regulates Rho-GTPases, but may have other functions as well. To analyze its effect on gene expression, RhoGDIbeta was suppressed by RNA interference in MDA-MB-231 breast cancer cells and changes in gene expression monitored by cDNA microarrays.

Publication Title

Cyclooxygenase-2 is a target gene of rho GDP dissociation inhibitor beta in breast cancer cells.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact