refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 32 results
Sort by

Filters

Technology

Platform

accession-icon GSE11769
Analysis of ectopic human endometrium and peritoneal tissues in nude mice
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 35 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Endometrial-peritoneal interactions during endometriotic lesion establishment.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE11768
Nude mouse model of endometriosis
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

The pathophysiology of endometriotic lesion development remains unclear but involves a complex interaction between ectopic endometrium and host peritoneal tissues. We hypothesised that disruption of this interaction was likely to suppress endometriotic lesion formation. We hoped to delineate the molecular and cellular dialogue between ectopic human endometrium and peritoneal tissues in nude mice, as a first step towards testing this hypothesis. Human endometrium was xenografted into nude mice and the resulting lesions were analysed using microarrays. A novel technique was developed that unambiguously determined whether RNA transcripts identified by the microarray analyses originated from human cells (endometrium) or mouse cells (stroma). Four key pathways (ubiquitin/proteosome, inflammation, tissue remodelling/repair and ras-mediated oncogenesis) were revealed, that demonstrated communication between host stromal cells and ectopic endometrium.

Publication Title

Endometrial-peritoneal interactions during endometriotic lesion establishment.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE11691
Euctopic and ectopic human endometrium (endometriosis)
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

The pathophysiology of endometriotic lesion development remains unclear but involves a complex interaction between ectopic endometrium and host peritoneal tissues. We hypothesised that disruption of this interaction was likely to suppress endometriotic lesion formation. We hoped to delineate the molecular and cellular dialogue between ectopic human endometrium and peritoneal tissues in nude mice, as a first step towards testing this hypothesis. Human endometrium was xenografted into nude mice and the resulting lesions were analysed using microarrays. A novel technique was developed that unambiguously determined whether RNA transcripts identified by the microarray analyses originated from human cells (endometrium) or mouse cells (stroma). Four key pathways (ubiquitin/proteosome, inflammation, tissue remodelling/repair and ras-mediated oncogenesis) were revealed, that demonstrated communication between host stromal cells and ectopic endometrium.

Publication Title

Endometrial-peritoneal interactions during endometriotic lesion establishment.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP117785
RNA sequencing analysis of triple cytokine-captured human CD4 T cells
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

GM-CSF positve CD4 cells are found at sites of inflammation. The purpose of this study was to understand their transcriptional profile relative to known Th1 and Th17 subsets. Overall design: Human CD4 T cells were isolated by magnetic negative selection and activated with PMA and ionomycin. A cytokine capture assay was used to isolate CD45RA-positive, cytokine negative, IFN-gamma-single-positive, IL-17A-single-positive, GM-CSF-single positive and IL-17A-GM-CSF-double positive cells.

Publication Title

Unique transcriptome signatures and GM-CSF expression in lymphocytes from patients with spondyloarthritis.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE84968
Histone H2A T120 phophorylation promotes oncogenic transformation via upregulation of cyclin D1y
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HumanRef-8 v3.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Histone H2A T120 Phosphorylation Promotes Oncogenic Transformation via Upregulation of Cyclin D1.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE84962
Genome-wide analysis of gene expression regulated by VRK1 kinase in cancer cell lines [Illumina]
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HumanRef-8 v3.0 expression beadchip

Description

Histone H2A T120 phosphorylation promotes oncogenic transformation via upregulation of cyclin D1

Publication Title

Histone H2A T120 Phosphorylation Promotes Oncogenic Transformation via Upregulation of Cyclin D1.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE69389
Expression data from Arabidopsis thaliana root protoplast
  • organism-icon Arabidopsis thaliana
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

BACKGROUND:Dynamic transcriptional regulation is critical for an organism's response to environmental signals and yet remains elusive to capture. Such transcriptional regulation is mediated by master transcription factors (TF) that control large gene regulatory networks. Recently, we described a dynamic mode of TF regulation named "hit-and-run". This model proposes that master TF can interact transiently with a set of targets, but the transcription of these transient targets continues after the TF dissociation from the target promoter. However, experimental evidence validating active transcription of the transient TF-targets is still lacking.

Publication Title

"Hit-and-Run" transcription: de novo transcription initiated by a transient bZIP1 "hit" persists after the "run".

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE77274
Estradiol facilitates functional integration of induced pluripotent stem cell-derived dopaminergic neurons into striatal neuronal circuits via activation of integrin 51
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

To realize cell transplantation therapy for Parkinson's disease (PD), the grafted neurons should be integrated into the host neuronal circuit in order to restore the lost neuronal function. Here, using wheat germ agglutinin-based trans-synaptic tracing, we show that integrin 5 is selectively expressed in striatal neurons that are innervated by midbrain dopaminergic (DA) neurons from the mouse experiments. Additionally, we found that integrin 51 was activated by the administration of estradiol-2-benzoate (E2B) in striatal neurons of adult female rats. Importantly, we observed that the systemic administration of E2B into hemi-parkinsonian rat models facilitates the functional integration of grafted DA neurons derived from human induced pluripotent stem cells into the host striatal neuronal circuit via the activation of integrin 51. Finally, methamphetamine-induced abnormal rotation was recovered earlier in E2B-administrated rats than in rats that received other regimens. Our results suggest that the simultaneous administration of E2B with stem cell-derived DA progenitors can enhance the efficacy of cell transplantation therapy for PD.

Publication Title

Estradiol Facilitates Functional Integration of iPSC-Derived Dopaminergic Neurons into Striatal Neuronal Circuits via Activation of Integrin α5β1.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE8444
Genes in nonpermissive temperature-induced cell growth arrest and differentiation of tracheal epithelial RTEC11 cells
  • organism-icon Rattus norvegicus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Expression 230A Array (rae230a)

Description

We performed global scale microarray analysis to identify detailed mechanisms by which nonpermissive temperature induces cell growth arrest and differentiation in tracheal epithelial RTEC11 cells harboring temperature-sensitive simian virus 40 large T-antigen by using an Affymetrix GeneChip system. Tracheal epithelial RTEC11 cells used in this study were derived from transgenic rats harboring a temperature-sensitive simian virus 40 large T-antigen. Although the cells grew continuously at the permissive temperature, the nonpermissive temperature led to cell growth arrest and differentiation.

Publication Title

Establishment and functional characterization of a tracheal epithelial cell line RTEC11 from transgenic rats harboring temperature-sensitive simian virus 40 large T-antigen.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE44786
Rat mammary cancer (spontaneous, radiation, MNU, PhIP, radiation + MNU, radiation + PhIP) (high corn oil diet)
  • organism-icon Rattus norvegicus
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Although various mechanisms have been inferred for combinatorial actions of multiple carcinogens, these mechanisms have not been well demonstrated in experimental carcinogenesis models. We evaluated mammary carcinogenesis initiated by combined exposure to various doses of radiation and chemical carcinogens. Female rats at 7 weeks of age were -irradiated (0.22 Gy) and/or exposed to 1-methyl-1-nitrosourea (20 or 40 mg/kg, single intraperitoneal injection) or 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (40 mg/kg/day by gavage for 10 days) and were observed until 50 weeks of age. The incidence of mammary carcinoma increased steadily as a function of radiation dose in the absence of chemicals; mathematical analysis supported an additive increase when radiation was combined with a chemical carcinogen, irrespective of the chemical species and its dose. Hras mutations were characteristic of carcinomas that developed after chemical carcinogen treatments and were overrepresented in carcinomas induced by the combination of radiation and MNU (but not PhIP), indicating an interaction of radiation and MNU at the level of initiation. The expression profiles of seven classifier genes, previously shown to distinguish two classes of rat mammary carcinomas, categorized almost all examined carcinomas that developed after individual or combined treatments with radiation (1 Gy) and chemicals as belonging to a single class; more comprehensive screening using microarrays and a separate test sample set failed to identify differences in gene expression profiles among these carcinomas. These results suggest that a complex, multilevel interaction underlies the combinatorial action of radiation and chemical carcinogens in the experimental model.

Publication Title

Molecular characterization of cancer reveals interactions between ionizing radiation and chemicals on rat mammary carcinogenesis.

Sample Metadata Fields

Specimen part

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact