refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 159 results
Sort by

Filters

Technology

Platform

accession-icon SRP081553
Characterization of genetic loss-of-function of Fus in zebrafish
  • organism-icon Danio rerio
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

The RNA-binding protein FUS is implicated in transcription, alternative splicing of neuronal genes and DNA repair. Mutations in FUS have been linked to human neurodegenerative diseases such as ALS (amyotrophic lateral sclerosis). We genetically disrupted fus in zebrafish (Danio rerio) using the CRISPR-Cas9 system. The fus knockout animals are fertile and did not show any distinctive phenotype. Mutation of fus induces mild changes in gene expression on the transcriptome and proteome level in the adult brain. We observed a significant influence of genetic background on gene expression and 3’UTR usage, which could mask the effects of loss of Fus. Unlike published fus morphants, maternal zygotic fus mutants do not show motoneuronal degeneration and exhibit normal locomotor activity. Overall design: We performed paired-end sequencing (100bp reads) of the polyA+ transcriptome from brains of five individuals with Fus-/- genotype and four with Fus wild type genotype. Note on RNA-Seq replicates: after performing first RNA sequencing on four replicates of Fus-/- and WT (labeled with the prefix "Sample_imb_ketting_2014_13_") we received a notice from Illumina stating a problem with the library preparation kit lot that was used to prepare the libraries. Due to that, we performed RNA sequencing a second time, using the same input RNA, except for the Fus knockout replicate #3, because there was not enough input RNA left. Instead, a different Fus knockout replicate (#1) was sequenced. However, we compared the mapped reads from sequencing run 1 and sequencing run 2 using plotCorrelaction from DeepTools, and the samples are highly correlated (at least 0.97 and 0.95, Spearman and Pearson correlation respectively). Therefore, we considered first ("Sample_imb_ketting_2014_13_") and second sequencing runs as technical replicates.

Publication Title

Characterization of genetic loss-of-function of Fus in zebrafish.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP108341
TrapSeq: An RNA Sequencing-based pipeline for the identification of genetrap insertions in mammalian cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Current pipelines used to map genetrap insertion sites are based on inverse- or splinkerette-PCR methods, which despite their efficacy are prone to artifacts and do not provide information on the impact of the genetrap on the expression of the targeted gene. We developed a new method, which we named TrapSeq, for the mapping of genetrap insertions based on paired-end RNA sequencing. By recognizing chimeric mRNAs containing genetrap sequences spliced to an endogenous exon, our method identifies insertions that lead to productive trapping. Overall design: We conducted two independent screenings for sensitivity against 6-thioguanine (6TG) and an ATR inhibitor (ATRi). We applied our RNAseq-based pipeline (TrapSeq) to identify mutations that provide resistance to these reagents. Importantly, and besides its use for screenings, when applied to individual clones our method provides a fast and cost-effective way that not only identifies the insertion site of the genetrap but also reveals the impact of the insertion on the expression of the trapped gene. Please note that HAP1, haploid for all chromosomes, derives from near-haploid KBM7 parent line which was in turn obtained from a chronic myeloid leukemia patient in blast crisis phase (Carette et al. Nature 477:340-343, 2011).

Publication Title

Trap<sup>Seq</sup>: An RNA Sequencing-Based Pipeline for the Identification of Gene-Trap Insertions in Mammalian Cells.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE71312
Expression data from WT Col-0 and the pdx1.3 ko mutant of Arabidopsis
  • organism-icon Arabidopsis thaliana
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

We performed a microarray experiment to assess the global changes in transcription occurring in leaves and roots of the vitamin B6 deficient pdx1.3 knockout mutant in comparison to WT. Vitamin B6 (pyridoxal 5-phosphate) is an essential cofactor of many metabolic enzymes. Plants biosynthesize the vitamin de novo employing two enzymes, pyridoxine synthase1 (PDX1) and PDX2. In Arabidopsis (Arabidopsis thaliana), there are two catalytically active paralogs of PDX1 (PDX1.1 and PDX1.3) producing the vitamin at comparable rates. Since single mutants are viable but the pdx1.1 pdx1.3 double mutant is lethal, the corresponding enzymes seem redundant.

Publication Title

Consequences of a deficit in vitamin B6 biosynthesis de novo for hormone homeostasis and root development in Arabidopsis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE35471
Expression data from L3 Drosophila antennal-eyediscs
  • organism-icon Drosophila melanogaster
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Growth of the drosophila eye imaginal discs is controlled by the activation of Notch in the dorsal-ventral boundary. Overexpression in the eye disc of the Notch ligand Delta together with lola and pipsqueak from the GS(2)88A8 line induces tumoral growth. We used microarray to analyze the expression profile of tumoral discs.

Publication Title

Imaginal discs secrete insulin-like peptide 8 to mediate plasticity of growth and maturation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE57907
Expression data from skin of bovines infested with ticks
  • organism-icon Bos taurus
  • sample-icon 29 Downloadable Samples
  • Technology Badge Icon Affymetrix Bovine Genome Array (bovine)

Description

The aim of this work was to access the early immune response triggered by R. microplus larvae attachment in previously selected resistant and susceptible animals in a bovine F2 population derived from Gyr (Bos indicus) Holstein (Bos taurus) crosses.

Publication Title

Microarray analysis of tick-infested skin in resistant and susceptible cattle confirms the role of inflammatory pathways in immune activation and larval rejection.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE51379
transcriptional changes in sweet orange in response to infection by citrus canker bacteria and their effector proteins PthAs and PthCs
  • organism-icon Citrus sinensis
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Citrus Genome Array (citrus)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Identification of putative TAL effector targets of the citrus canker pathogens shows functional convergence underlying disease development and defense response.

Sample Metadata Fields

Age, Specimen part, Time

View Samples
accession-icon GSE51368
Sweet orange genes regulated by TAL effectors of Xanthomonas citri (Xc) or Xanthomonas aurantifolii pathotype C
  • organism-icon Citrus sinensis
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Citrus Genome Array (citrus)

Description

Microarray analyses of sweet orange epicotyls transiently transfected with the pthA2, pthA4 or pthC1 gene, relative to epicotyls transfected with the uid gene (GUS)

Publication Title

Identification of putative TAL effector targets of the citrus canker pathogens shows functional convergence underlying disease development and defense response.

Sample Metadata Fields

Age, Specimen part, Time

View Samples
accession-icon GSE51367
Sweet orange genes regulated by Xanthomonas citri (Xc) in the presence or absence of cycloheximide (Ch), or Ch alone
  • organism-icon Citrus sinensis
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Citrus Genome Array (citrus)

Description

Microarray analyses of sweet orange leaves infiltrated with Xc in the presence or absence of Ch, or Ch alone

Publication Title

Identification of putative TAL effector targets of the citrus canker pathogens shows functional convergence underlying disease development and defense response.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE71274
IFNg+ vs IFNg- Treg
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Gene expression studies comparing IFNg+ Tregs versus IFNg- Tregs from human peripheral blood

Publication Title

AKT isoforms modulate Th1-like Treg generation and function in human autoimmune disease.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE38712
Gene expression in germinal center light zone and dark zone B cells
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Identification of human germinal center light and dark zone cells and their relationship to human B-cell lymphomas.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact